Switched generalized function projective synchronization of two hyperchaotic systems with hidden attractors

被引:23
作者
Feng, Yu [1 ]
Pu, J. [2 ]
Wei, Z. [3 ,4 ]
机构
[1] Yulin Normal Univ, Sch Math & Informat Sci, Guangxi Univ Key Lab Complex Syst Optimizat & Big, Yulin 537000, Peoples R China
[2] Univ Int Business & Econ, Sch Business, Beijing 100029, Peoples R China
[3] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Peoples R China
[4] Beijing Univ Technol, Coll Mech Engn, Beijing 100124, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
MULTIAGENT SYSTEMS; CHAOS; CONSENSUS; TRANSITION; PHASE;
D O I
10.1140/epjst/e2015-02482-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work is involved with new results for adaptive switched generalized function projective synchronization between hyperchaotic diffusionless Lorenz equations (2014) and modified Lorenz-Stenflo system (2014), when the two system parameters are unknown. Hyperchaotic diffusionless Lorenz equations and modified Lorenz-Stenflo system belong to a newly introduced category of chaotic systems, and both generate hidden hyperchaos and complicated phenomena. Based on the Lyapunov stability theory, corresponding adaptive controllers with appropriate parameter update laws are constructed to achieve adaptive switched generalized function projective synchronization between the two different hyperchaotic systems. Numerical simulations are given to show the feasibility of theoretical results.
引用
收藏
页码:1593 / 1604
页数:12
相关论文
共 42 条
  • [1] Generalized synchronization of chaos: The auxiliary system approach
    Abarbanel, HDI
    Rulkov, NF
    Sushchik, MM
    [J]. PHYSICAL REVIEW E, 1996, 53 (05) : 4528 - 4535
  • [2] Characterization of intermittent lag synchronization
    Boccaletti, S
    Valladares, DL
    [J]. PHYSICAL REVIEW E, 2000, 62 (05): : 7497 - 7500
  • [3] Modified projective synchronization of chaotic systems with disturbances via active sliding mode control
    Cai, Na
    Jing, Yuanwei
    Zhang, Siying
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (06) : 1613 - 1620
  • [4] Multi-Agent Systems with Dynamical Topologies: Consensus and Applications
    Chen, Yao
    Lu, Jinhu
    Yu, Xinghuo
    Hill, David J.
    [J]. IEEE CIRCUITS AND SYSTEMS MAGAZINE, 2013, 13 (03) : 21 - 34
  • [5] CONSENSUS OF DISCRETE-TIME SECOND-ORDER MULTIAGENT SYSTEMS BASED ON INFINITE PRODUCTS OF GENERAL STOCHASTIC MATRICES
    Chen, Yao
    Lu, Jinhu
    Yu, Xinghuo
    Lin, Zongli
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (04) : 3274 - 3301
  • [6] Consensus of discrete-time multi-agent systems with transmission nonlinearity
    Chen, Yao
    Lu, Jinhu
    Lin, Zongli
    [J]. AUTOMATICA, 2013, 49 (06) : 1768 - 1775
  • [7] Function projective synchronization of different chaotic systems with uncertain parameters
    Du, Hongyue
    Zeng, Qingshuang
    Wang, Changhong
    [J]. PHYSICS LETTERS A, 2008, 372 (33) : 5402 - 5410
  • [8] Synchronization of chaotic systems with different order -: art. no. 036226
    Femat, R
    Solís-Perales, G
    [J]. PHYSICAL REVIEW E, 2002, 65 (03): : 1 - 036226
  • [9] Robust adaptive modified function projective synchronization of different hyperchaotic systems subject to external disturbance
    Fu, Guiyuan
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) : 2602 - 2608
  • [10] Generalized synchronization onset
    Hramov, AE
    Koronovskii, AA
    Moskalenko, OI
    [J]. EUROPHYSICS LETTERS, 2005, 72 (06): : 901 - 907