Superhydrophobic inkjet printed flexible graphene circuits via direct-pulsed laser writing

被引:32
作者
Das, Suprem R. [1 ,2 ,3 ,4 ]
Srinivasan, Srilok [1 ]
Stromberg, Loreen R. [1 ]
He, Qing [1 ]
Garland, Nathaniel [1 ]
Straszheim, Warren E. [5 ]
Ajayan, Pulickel M. [6 ]
Balasubramanian, Ganesh [7 ]
Claussen, Jonathan C. [1 ,2 ,3 ,4 ]
机构
[1] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
[2] Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA
[3] Iowa State Univ, Appl Sci Complex 1, Ames, IA 50011 USA
[4] Iowa State Univ, Microelect Res Ctr, Ames, IA 50011 USA
[5] Iowa State Univ, Mat Anal & Res Lab, Ames, IA 50011 USA
[6] Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA
[7] Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA
基金
美国国家科学基金会; 美国食品与农业研究所;
关键词
MOLECULAR-DYNAMICS; HIGH-PERFORMANCE; SURFACES; ELECTRONICS; INKS; GRAPHITE; CARBON; CONDUCTIVITY; WETTABILITY; SIMULATIONS;
D O I
10.1039/c7nr06213c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solution-phase printing of exfoliated graphene flakes is emerging as a low-cost means to create flexible electronics for numerous applications. The electrical conductivity and electrochemical reactivity of printed graphene has been shown to improve with post-print processing methods such as thermal, photonic, and laser annealing. However, to date no reports have shown the manipulation of surface wettability via post-print processing of printed graphene. Herein, we demonstrate how the energy density of a direct-pulsed laser writing (DPLW) technique can be varied to tune the hydrophobicity and electrical conductivity of the inkjet-printed graphene (IPG). Experimental results demonstrate that the DPLW process can convert the IPG surface from one that is initially hydrophilic (contact angle similar to 47.7 degrees) and electrically resistive (sheet resistance similar to 21 M Omega square(-1)) to one that is superhydrophobic (CA similar to 157.2 degrees) and electrically conductive (sheet resistance similar to 1.1 k Omega square(-1)). Molecular dynamic (MD) simulations reveal that both the nanoscale graphene flake orientation and surface chemistry of the IPG after DPLW processing induce these changes in surface wettability. Moreover, DPLW can be performed with IPG printed on thermally and chemically sensitive substrates such as flexible paper and polymers. Hence, the developed, flexible IPG electrodes treated with DPLW could be useful for a wide range of applications such as self-cleaning, wearable, or washable electronics.
引用
收藏
页码:19058 / 19065
页数:8
相关论文
共 43 条
[1]   LATTICE CONSTANTS OF GRAPHITE AT LOW TEMPERATURES [J].
BASKIN, Y ;
MEYER, L .
PHYSICAL REVIEW, 1955, 100 (02) :544-544
[2]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[3]   A smooth future? [J].
Bocquet, Lyderic ;
Lauga, Eric .
NATURE MATERIALS, 2011, 10 (05) :334-337
[4]   A paper based graphene-nanocauliflower hybrid composite for point of care biosensing [J].
Burrs, S. L. ;
Bhargava, M. ;
Sidhu, R. ;
Kiernan-Lewis, J. ;
Gomes, C. ;
Claussen, J. C. ;
McLamore, E. S. .
BIOSENSORS & BIOELECTRONICS, 2016, 85 :479-487
[5]   Inkjet Printing of Single-Crystalline Bi2Te3 Thermoelectric Nanowire Networks [J].
Chen, Bolin ;
Das, Suprem R. ;
Zheng, Wei ;
Zhu, Bowen ;
Xu, Biao ;
Hong, Sungbum ;
Sun, Chenghan ;
Wang, Xinwei ;
Wu, Yue ;
Claussen, Jonathan C. .
ADVANCED ELECTRONIC MATERIALS, 2017, 3 (04)
[6]   Electrical Differentiation of Mesenchymal Stem Cells into Schwann-Cell-Like Phenotypes Using Inkjet-Printed Graphene Circuits [J].
Das, Suprem R. ;
Uz, Metin ;
Ding, Shaowei ;
Lentner, Matthew T. ;
Hondred, John A. ;
Cargill, Allison A. ;
Sakaguchi, Donald S. ;
Mallapragada, Surya ;
Claussen, Jonathan C. .
ADVANCED HEALTHCARE MATERIALS, 2017, 6 (07)
[7]   3D nanostructured inkjet printed graphene via UV-pulsed laser irradiation enables paper-based electronics and electrochemical devices [J].
Das, Suprem R. ;
Nian, Qiong ;
Cargill, Allison A. ;
Hondred, John A. ;
Ding, Shaowei ;
Saei, Mojib ;
Cheng, Gary J. ;
Claussen, Jonathan C. .
NANOSCALE, 2016, 8 (35) :15870-15879
[8]   Dynamic wetting studied by molecular modeling simulations of droplet spreading [J].
de Ruijter, MJ ;
Blake, TD ;
De Coninck, J .
LANGMUIR, 1999, 15 (22) :7836-7847
[9]   Wetting transparency of graphene in water [J].
Driskill, Joshua ;
Vanzo, Davide ;
Bratko, Dusan ;
Luzar, Alenka .
JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (18)
[10]   Wetting 101° [J].
Gao, Lichao ;
McCarthy, Thomas J. .
LANGMUIR, 2009, 25 (24) :14105-14115