In Situ Investigation of Lithium Metal-Solid Electrolyte Anode Interfaces with ToF-SIMS

被引:71
作者
Otto, Svenja-K [1 ,2 ]
Riegger, Luise M. [1 ,2 ]
Fuchs, Till [1 ,2 ]
Kayser, Sven [3 ]
Schweitzer, Pascal [2 ,4 ]
Burkhardt, Simon [1 ,2 ]
Henss, Anja [1 ,2 ]
Janek, Juergen [1 ,2 ]
机构
[1] Justus Liebig Univ Giessen, Inst Phys Chem, Heinrich Buff Ring 17, D-35392 Giessen, Germany
[2] Justus Liebig Univ Giessen, Ctr Mat Res ZfM, Heinrich Buff Ring 16, D-35392 Giessen, Germany
[3] IONTOF GmbH, Heisenbergstr 15, D-48149 Munster, Germany
[4] Justus Liebig Univ Giessen, Inst Appl Phys, Heinrich Buff Ring 16, D-35392 Giessen, Germany
关键词
interphase formation; lithium metal anodes; solid electrolytes; solid-state batteries; ToF-SIMS; INTERPHASE FORMATION; STATE BATTERIES; STABILITY;
D O I
10.1002/admi.202102387
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid-state batteries with a lithium metal anode (LMA) are promising candidates for the next generation of energy storage systems with high energy and power density. However, successful implementation of the LMA requires deeper insight into the lithium metal-solid electrolyte (Li|SE) interface. Since lithium is highly reactive, reaction products form when it comes into contact with most solid electrolytes (SEs) and the resulting interphase can have detrimental effects on cell performance. To better understand the formation of interphases, Li|SE interfaces are studied with time-of-flight secondary-ion mass spectrometry (ToF-SIMS), which provides chemical information with high sensitivity in 2D as well as 3D and is a valuable complement to commonly used techniques. To investigate the interphase, lithium is deposited in situ on SE pellets either through lithium vapor deposition or electrochemical lithium plating. Subsequent depth profiling provides information about the stability of the Li|SE interface and about the microstructure of the formed interphase. At the Li|Li6PS5Cl interface of lithium metal with argyrodite-type Li6PS5Cl, an apparently covering Li2S-rich layer is found as major part of the interphase. Independent of the deposition method, a combination of ToF-SIMS and atomic force microscopy indicates a thickness of about 250 nm for the Li2S-rich interlayer.
引用
收藏
页数:10
相关论文
共 42 条
[1]   Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes [J].
Banerjee, Abhik ;
Wang, Xuefeng ;
Fang, Chengcheng ;
Wu, Erik A. ;
Meng, Ying Shirley .
CHEMICAL REVIEWS, 2020, 120 (14) :6878-6933
[2]   Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces [J].
Chen, Rusong ;
Li, Qinghao ;
Yu, Xiqian ;
Chen, Liquan ;
Li, Hong .
CHEMICAL REVIEWS, 2020, 120 (14) :6820-6877
[3]   Argyrodite Solid Electrolyte with a Stable Interface and Superior Dendrite Suppression Capability Realized by ZnO Co-Doping [J].
Chen, Ting ;
Zhang, Long ;
Zhang, Zhaoxing ;
Li, Peng ;
Wang, Hongqiang ;
Yu, Chuang ;
Yan, Xinlin ;
Wang, Limin ;
Xu, Bo .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (43) :40808-40816
[4]   Electrochemical Compatibility of Solid-State Electrolytes with Cathodes and Anodes for All-Solid-State Lithium Batteries: A Review [J].
Chen, Xiao ;
Xie, Jian ;
Zhao, Xinbing ;
Zhu, Tiejun .
ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (05)
[5]   Kinetic versus Thermodynamic Stability of LLZO in Contact with Lithium Metal [J].
Connell, Justin G. ;
Fuchs, Till ;
Hartmann, Hannah ;
Krauskopf, Thorben ;
Zhu, Yisi ;
Sann, Joachim ;
Garcia-Mendez, Regina ;
Sakamoto, Jeff ;
Tepavcevic, Sanja ;
Janek, Juergen .
CHEMISTRY OF MATERIALS, 2020, 32 (23) :10207-10215
[6]   Operando Analysis of Interphase Dynamics in Anode-Free Solid-State Batteries with Sulfide Electrolytes [J].
Davis, Andrew L. ;
Kazyak, Eric ;
Liao, Daniel W. ;
Wood, Kevin N. ;
Dasgupta, Neil P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (07)
[7]   Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface [J].
Fu, Kun ;
Gong, Yunhui ;
Liu, Boyang ;
Zhu, Yizhou ;
Xu, Shaomao ;
Yao, Yonggang ;
Luo, Wei ;
Wang, Chengwei ;
Lacey, Steven D. ;
Dai, Jiaqi ;
Chen, Yanan ;
Mo, Yifei ;
Wachsman, Eric ;
Hu, Liangbing .
SCIENCE ADVANCES, 2017, 3 (04)
[8]   Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries [J].
Guo, Yanpeng ;
Li, Huiqiao ;
Zhai, Tianyou .
ADVANCED MATERIALS, 2017, 29 (29)
[9]   A review on strategies addressing interface incompatibilities in inorganic all-solid-state lithium batteries [J].
Gurung, Ashim ;
Pokharel, Jyotshna ;
Baniya, Abiral ;
Pathak, Rajesh ;
Chen, Ke ;
Lamsal, Buddhi Sagar ;
Ghimire, Nabin ;
Zhang, Wen-Hua ;
Zhou, Yue ;
Qiao, Qiquan .
SUSTAINABLE ENERGY & FUELS, 2019, 3 (12) :3279-3309
[10]   Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes [J].
Han, Fudong ;
Zhu, Yizhou ;
He, Xingfeng ;
Mo, Yifei ;
Wang, Chunsheng .
ADVANCED ENERGY MATERIALS, 2016, 6 (08)