Blow up property for viscoelastic evolution equations on manifolds with conical degeneration

被引:2
作者
Alimohammady, Mohsen [1 ]
Kalleji, Morteza Koozehgar [2 ]
机构
[1] Univ Mazandaran, Dept Math, Fac Math Sci, Babol Sar 474161468, Iran
[2] Arak Univ, Dept Math, Fac Sci, Arak 3815688349, Iran
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2020年 / 130卷 / 01期
关键词
Viscoelastic equation; blow up; cone Sobolev spaces; degenerated differential operator; WAVE-EQUATION; ASYMPTOTIC STABILITY; GLOBAL-SOLUTIONS; DECAY-RATES; EXISTENCE; NONEXISTENCE;
D O I
10.1007/s12044-020-0558-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the study of nonlinear viscoelastic evolution equation with strong damping and source terms, described by utt-Delta Bu+integral 0tg(t-tau)Delta Bu(tau)d tau+f(x)ut|ut|m-2 =h(x)|u|p-2u,x is an element of intB,t>0, where B is a stretched manifold. First, we prove the solutions of problem (1.1) in the cone Sobolev space H2,01,n2(B), which admit a blow up in finite time for p>m and positive initial energy. Then, we construct a lower bound for obtaining blow up time under appropriate assumptions on data.
引用
收藏
页数:25
相关论文
共 22 条