Blow up property for viscoelastic evolution equations on manifolds with conical degeneration

被引:2
作者
Alimohammady, Mohsen [1 ]
Kalleji, Morteza Koozehgar [2 ]
机构
[1] Univ Mazandaran, Dept Math, Fac Math Sci, Babol Sar 474161468, Iran
[2] Arak Univ, Dept Math, Fac Sci, Arak 3815688349, Iran
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2020年 / 130卷 / 01期
关键词
Viscoelastic equation; blow up; cone Sobolev spaces; degenerated differential operator; WAVE-EQUATION; ASYMPTOTIC STABILITY; GLOBAL-SOLUTIONS; DECAY-RATES; EXISTENCE; NONEXISTENCE;
D O I
10.1007/s12044-020-0558-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the study of nonlinear viscoelastic evolution equation with strong damping and source terms, described by utt-Delta Bu+integral 0tg(t-tau)Delta Bu(tau)d tau+f(x)ut|ut|m-2 =h(x)|u|p-2u,x is an element of intB,t>0, where B is a stretched manifold. First, we prove the solutions of problem (1.1) in the cone Sobolev space H2,01,n2(B), which admit a blow up in finite time for p>m and positive initial energy. Then, we construct a lower bound for obtaining blow up time under appropriate assumptions on data.
引用
收藏
页数:25
相关论文
共 22 条
[1]   Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain [J].
Aassila, M ;
Cavalcanti, MM ;
Soriano, JA .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (05) :1581-1602
[2]   Global results for semilinear hyperbolic equations with damping term on manifolds with conical singularity [J].
Alimohammady, Mohsen ;
Kalleji, Morteza Koozehgar ;
Karamali, Gholamreza .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (11) :4160-4178
[3]   Existence result for a class of semilinear totally characteristic hypoelliptic equations with conical degeneration [J].
Alimohammady, Mohsen ;
Kalleji, Morteza Koozehgar .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (10) :2331-2356
[4]   On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source [J].
Alves, Claudianor O. ;
Cavalcanti, Marcelo M. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (03) :377-411
[5]  
Andrade D, 2006, J COMPUT ANAL APPL, V8, P173
[6]  
[Anonymous], 1987, PITMAN MONOGRAPHS SU
[7]  
[Anonymous], 1992, SIAM STUDIES APPL MA
[8]   ASYMPTOTIC STABILITY OF THE WAVE EQUATION ON COMPACT SURFACES AND LOCALLY DISTRIBUTED DAMPING-A SHARP RESULT [J].
Cavalcanti, M. M. ;
Cavalcanti, V. N. Domincos ;
Fukuoka, R. ;
Soriano, J. A. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (09) :4561-4580
[9]  
Cavalcanti MM, 2002, ELECTRON J DIFFER EQ
[10]   ASYMPTOTIC STABILITY OF THE WAVE EQUATION ON COMPACT MANIFOLDS AND LOCALLY DISTRIBUTED VISCOELASTIC DISSIPATION [J].
Cavalcanti, Marcelo M. ;
Domingos Cavalcanti, Valeria N. ;
Nascimento, Flavio A. F. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (09) :3183-3193