The Aleksandrov problem in linear 2-normed spaces

被引:30
作者
Chu, HY [1 ]
Park, CG [1 ]
Park, WG [1 ]
机构
[1] Chungnam Natl Univ, Dept Math, Taejon 305764, South Korea
关键词
linear 2-normed space; 2-isometry; 2-Lipschitz mapping;
D O I
10.1016/j.jmaa.2003.09.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the concept of 2-isometry which is suitable to represent the notion of area preserving mappings in linear 2-normed spaces. And then we obtain some results for the Aleksandrov problem in linear 2-normed spaces. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:666 / 672
页数:7
相关论文
共 6 条
[1]  
ALEKSANDROV A. D., 1970, SOV MATH DOKL, V11, P116
[2]  
CHO Y. J., 2001, Theory of 2-inner product spaces
[3]   The Aleksandrov problem for unit distance preserving mapping [J].
Ma, YM .
ACTA MATHEMATICA SCIENTIA, 2000, 20 (03) :359-364
[4]   On the A. D. Aleksandrov problem of conservative distances and the Mazur-Ulam theorem [J].
Rassias, TM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (04) :2597-2608
[5]   ON THE MAZUR-ULAM THEOREM AND THE ALEKSANDROV PROBLEM FOR UNIT DISTANCE PRESERVING MAPPINGS [J].
RASSIAS, TM ;
SEMRL, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (03) :919-925
[6]   Mappings of conservative distances and the Mazur-Ulam theorem [J].
Xiang, SH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 254 (01) :262-274