Radiomic Features Are Superior to Conventional Quantitative Computed Tomographic Metrics to Identify Coronary Plaques With Napkin-Ring Sign

被引:185
作者
Kolossvary, Marton [1 ]
Karady, Julia [1 ]
Szilveszter, Balint [1 ]
Kitslaar, Pieter [2 ,3 ]
Hoffmann, Udo [4 ,5 ]
Merkely, Bela [1 ]
Maurovich-Horvat, Pal [1 ]
机构
[1] Semmelweis Univ, Heart & Vasc Ctr, MTA SE Cardiovasc Imaging Res Grp, 68 Varosmajor St, H-1122 Budapest, Hungary
[2] Leiden Univ, Med Ctr, Dept Radiol, Leiden, Netherlands
[3] Medis Med Imaging Syst BV, Leiden, Netherlands
[4] Massachusetts Gen Hosp, Dept Radiol, Boston, MA USA
[5] Harvard Med Sch, Boston, MA USA
关键词
angiography; atherosclerosis; chest pain; coronary artery disease; multidetector computed tomography; BREAST-LESIONS; HETEROGENEITY; VARIABILITY; PREDICTION; CANCER; QUANTIFICATION; ASSOCIATION; ANGIOGRAPHY; MALIGNANCY; SIGNATURE;
D O I
10.1161/CIRCIMAGING.117.006843
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background-Napkin-ring sign (NRS) is an independent prognostic imaging marker of major adverse cardiac events. However, identification of NRS is challenging because of its qualitative nature. Radiomics is the process of extracting thousands of quantitative parameters from medical images to create big-data data sets that can identify distinct patterns in radiological images. Therefore, we sought to determine whether radiomic analysis improves the identification of NRS plaques. Methods and Results-From 2674 patients referred to coronary computed tomographic angiography caused by stable chest pain, expert readers identified 30 patients with NRS plaques and matched these with 30 non-NRS plaques with similar degree of calcification, luminal obstruction, localization, and imaging parameters. All plaques were segmented manually, and image data information was analyzed using Radiomics Image Analysis package for the presence of 8 conventional and 4440 radiomic parameters. We used the permutation test of symmetry to assess differences between NRS and non-NRS plaques, whereas we calculated receiver-operating characteristics' area under the curve values to evaluate diagnostic accuracy. Bonferroni-corrected P<0.0012 was considered significant. None of the conventional quantitative parameters but 20.6% (916/4440) of radiomic features were significantly different between NRS and non-NRS plaques. Almost half of these (418/916) reached an area under the curve value >0.80. Short-and long-run low gray-level emphasis and surface ratio of high attenuation voxels to total surface had the highest area under the curve values (0.918; 0.894 and 0.890, respectively). Conclusions-A large number of radiomic features are different between NRS and non-NRS plaques and exhibit excellent discriminatory value.
引用
收藏
页数:9
相关论文
共 33 条
[1]   Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms [J].
Altazi, Baderaldeen A. ;
Zhang, Geoffrey G. ;
Fernandez, Daniel C. ;
Montejo, Michael E. ;
Hunt, Dylan ;
Werner, Joan ;
Biagioli, Matthew C. ;
Moros, Eduardo G. .
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2017, 18 (06) :32-48
[2]  
[Anonymous], 2016, R LANG ENV STAT COMP
[3]   Prediction of malignancy by a radiomic signature from contrast agent-free diffusion MRI in suspicious breast lesions found on screening mammography. [J].
Bickelhaupt, Sebastian ;
Paech, Daniel ;
Kickingereder, Philipp ;
Steudle, Franziska ;
Lederer, Wolfgang ;
Daniel, Heidi ;
Goetz, Michael ;
Gaehlert, Nils ;
Tichy, Diana ;
Wiesenfarth, Manuel ;
Laun, Frederik B. ;
Maier-Hein, Klaus H. ;
Schlemmer, Heinz-Peter ;
Bonekamp, David .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 46 (02) :604-616
[4]   Automated Quantification of Stenosis Severity on 64-Slice CT A Comparison With Quantitative Coronary Angiography [J].
Boogers, Mark J. ;
Schuijf, Joanne D. ;
Kitslaar, Pieter H. ;
van Werkhoven, Jacob M. ;
de Graaf, Fleur R. ;
Boersma, Eric ;
van Velzen, Joella E. ;
Dijkstra, Jouke ;
Adame, Isabel M. ;
Kroft, Lucia J. ;
de Roos, Albert ;
Schreur, Joop H. M. ;
Heijenbrok, Mark W. ;
Jukema, J. Wouter ;
Reiber, Johan H. C. ;
Bax, Jeroen J. .
JACC-CARDIOVASCULAR IMAGING, 2010, 3 (07) :699-709
[5]   The positive predictive value of mammographic signs: A review of 425 non-palpable breast lesions [J].
Burrell, HC ;
Pinder, SE ;
Wilson, ARM ;
Evans, AJ ;
Yeoman, LJ ;
Elston, CW ;
Ellis, IO .
CLINICAL RADIOLOGY, 1996, 51 (04) :277-281
[6]   Radiomic-Based Pathological Response Prediction from Primary Tumors and Lymph Nodes in NSCLC [J].
Coroller, Thibaud P. ;
Agrawal, Vishesh ;
Huynh, Elizabeth ;
Narayan, Vivek ;
Lee, Stephanie W. ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
JOURNAL OF THORACIC ONCOLOGY, 2017, 12 (03) :467-476
[7]   Identification of low variability textural features for heterogeneity quantification of 18F-FDG PET/CT imaging [J].
Cortes-Rodicio, J. ;
Sanchez-Merino, G. ;
Garcia-Fidalgo, M. A. ;
Tobalina-Larrea, I. .
REVISTA ESPANOLA DE MEDICINA NUCLEAR E IMAGEN MOLECULAR, 2016, 35 (06) :379-384
[8]   Assessment of tumor heterogeneity: An emerging imaging tool for clinical practice? [J].
Davnall F. ;
Yip C.S.P. ;
Ljungqvist G. ;
Selmi M. ;
Ng F. ;
Sanghera B. ;
Ganeshan B. ;
Miles K.A. ;
Cook G.J. ;
Goh V. .
Insights into Imaging, 2012, 3 (6) :573-589
[9]   Approximate statistical tests for comparing supervised classification learning algorithms [J].
Dietterich, TG .
NEURAL COMPUTATION, 1998, 10 (07) :1895-1923
[10]   Imaging of coronary atherosclerosis - evolution towards new treatment strategies [J].
Dweck, Marc R. ;
Doris, Mhairi K. ;
Motwani, Manish ;
Adamson, Philip D. ;
Slomka, Piotr ;
Dey, Damini ;
Fayad, Zahi A. ;
Newby, David E. ;
Berman, Daniel .
NATURE REVIEWS CARDIOLOGY, 2016, 13 (09) :533-548