Stochastic Burgers equation from long range exclusion interactions

被引:12
作者
Goncalves, Patricia [1 ]
Jara, Milton [2 ]
机构
[1] Univ Lisbon, Inst Super Tecn, Ctr Math Anal Geometry & Dynam Syst, Av Rovisco Pais, P-1049001 Lisbon, Portugal
[2] Inst Matematica Pura & Aplicada, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
基金
欧洲研究理事会;
关键词
Stochastic Burgers equation; KPZ equation; Long range exclusion; Equilibrium fluctuations; Universality; PARTICLE-SYSTEMS;
D O I
10.1016/j.spa.2017.03.022
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider one-dimensional exclusion processes with long jumps given by a transition probability of the form p(n)(.) = s(.) + gamma(n)a(.), such that its symmetric part s(.) is irreducible with finite variance and its antisymmetric part is absolutely bounded by s(.). We prove that under diffusive time scaling and strength of asymmetry root n gamma n -> n ->infinity b not equal 0 the equilibrium density fluctuations are given by the unique energy solution of the stochastic Burgers equation. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:4029 / 4052
页数:24
相关论文
共 35 条
[1]   Probability Distribution of the Free Energy of the Continuum Directed Random Polymer in 1+1 Dimensions [J].
Amir, Gideon ;
Corwin, Ivan ;
Quastel, Jeremy .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (04) :466-537
[2]  
[Anonymous], 2006, Classics in Mathematics
[3]   Stochastic burgers and KPZ equations from particle systems [J].
Bertini, L ;
Giacomin, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 183 (03) :571-607
[4]  
Blondel O., 2017, ELECTRON J PROBAB, V21, P1
[5]   FROM DUALITY TO DETERMINANTS FOR q-TASEP AND ASEP [J].
Borodin, Alexei ;
Corwin, Ivan ;
Sasamoto, Tomohiro .
ANNALS OF PROBABILITY, 2014, 42 (06) :2314-2382
[6]   Macdonald processes [J].
Borodin, Alexei ;
Corwin, Ivan .
PROBABILITY THEORY AND RELATED FIELDS, 2014, 158 (1-2) :225-400
[7]  
Corwin I., 2016, ARXIV160201908
[8]  
Corwin I., 2016, ANN PROBAB IN PRESS
[9]   Weakly Asymmetric Non-Simple Exclusion Process and the Kardar-Parisi-Zhang Equation [J].
Dembo, Amir ;
Tsai, Li-Cheng .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 341 (01) :219-261
[10]  
DIACONIS P., 1993, The Annals of Applied Probability, V3, P696, DOI DOI 10.1214/AOAP/1177005359