Learning to disentangle scenes for person re-identification

被引:26
|
作者
Zang, Xianghao [1 ]
Li, Ge [1 ]
Gao, Wei [1 ]
Shu, Xiujun [2 ]
机构
[1] Peking Univ, Sch Elect & Comp Engn, Shenzhen 518055, Peoples R China
[2] Peng Cheng Lab, Shenzhen 518034, Peoples R China
基金
中国国家自然科学基金;
关键词
Person re-identification; Divide-and-conquer; Multi-branch network;
D O I
10.1016/j.imavis.2021.104330
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There are many challenging problems in the person re-identification (ReID) task, such as the occlusion and scale variation. Existing works usually tried to solve them by employing a one-branch network. This one-branch net -work needs to be robust to various challenging problems, which makes this network overburdened. This paper proposes to divide-and-conquer the ReID task. For this purpose, we employ several self-supervision operations to simulate different challenging problems and handle each challenging problem using different networks. Con-cretely, we use the random erasing operation and propose a novel random scaling operation to generate new im-ages with controllable characteristics. A general multi-branch network, including one master branch and two servant branches, is introduced to handle different scenes. These branches learn collaboratively and achieve dif-ferent perceptive abilities. In this way, the complex scenes in the ReID task are effectively disentangled, and the burden of each branch is relieved. The results from extensive experiments demonstrate that the proposed method achieves state-of-the-art performances on three ReID benchmarks and two occluded ReID benchmarks. Ablation study also shows that the proposed scheme and operations significantly improve the performance in various scenes. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Learning Irregular Space Transformation for Person Re-Identification
    Zheng, Yanwei
    Sheng, Hao
    Liu, Yang
    Lv, Kai
    Ke, Wei
    Xiong, Zhang
    IEEE ACCESS, 2018, 6 : 53214 - 53225
  • [42] Deep Parts Similarity Learning for Person Re-Identification
    Jose Gomez-Silva, Maria
    Maria Armingol, Jose
    de la Escalera, Arturo
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2018), VOL 5: VISAPP, 2018, : 419 - 428
  • [43] An intelligent correlation learning system for person Re-identification
    Khan, Samee Ullah
    Khan, Noman
    Hussain, Tanveer
    Baik, Sung Wook
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 128
  • [44] A survey of person re-identification based on deep learning
    Li Q.
    Hu W.-Y.
    Li J.-Y.
    Liu Y.
    Li M.-X.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2022, 44 (05): : 920 - 932
  • [45] Person Re-Identification Research via Deep Learning
    Lu Jian
    Chen Xu
    Luo Maoxin
    Wang Hangying
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (16)
  • [46] Progressive Learning for Person Re-Identification With One Example
    Wu, Yu
    Lin, Yutian
    Dong, Xuanyi
    Yan, Yan
    Bian, Wei
    Yang, Yi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (06) : 2872 - 2881
  • [47] Learning hybrid ranking representation for person re-identification
    Wu, Guile
    Zhu, Xiatian
    Gong, Shaogang
    PATTERN RECOGNITION, 2022, 121
  • [48] Person Re-Identification Based on Graph Relation Learning
    Wang, Hao
    Bi, Xiaojun
    NEURAL PROCESSING LETTERS, 2021, 53 (02) : 1401 - 1415
  • [49] A Supervisory Mask Attentional Network for Person Re-Identification in Uniform Dress Scenes
    Li, Bo
    Bai, Ling
    Wang, Yang
    Wu, Zhe
    Lin, Tong
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 552 - 559
  • [50] Person in Uniforms Re-Identification
    Xiang, Chong-yang
    Wu, Xiao
    He, Jun-Yan
    Yuan, Zhaoquan
    He, Tingquan
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2025, 21 (02)