Learning to disentangle scenes for person re-identification

被引:26
|
作者
Zang, Xianghao [1 ]
Li, Ge [1 ]
Gao, Wei [1 ]
Shu, Xiujun [2 ]
机构
[1] Peking Univ, Sch Elect & Comp Engn, Shenzhen 518055, Peoples R China
[2] Peng Cheng Lab, Shenzhen 518034, Peoples R China
基金
中国国家自然科学基金;
关键词
Person re-identification; Divide-and-conquer; Multi-branch network;
D O I
10.1016/j.imavis.2021.104330
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There are many challenging problems in the person re-identification (ReID) task, such as the occlusion and scale variation. Existing works usually tried to solve them by employing a one-branch network. This one-branch net -work needs to be robust to various challenging problems, which makes this network overburdened. This paper proposes to divide-and-conquer the ReID task. For this purpose, we employ several self-supervision operations to simulate different challenging problems and handle each challenging problem using different networks. Con-cretely, we use the random erasing operation and propose a novel random scaling operation to generate new im-ages with controllable characteristics. A general multi-branch network, including one master branch and two servant branches, is introduced to handle different scenes. These branches learn collaboratively and achieve dif-ferent perceptive abilities. In this way, the complex scenes in the ReID task are effectively disentangled, and the burden of each branch is relieved. The results from extensive experiments demonstrate that the proposed method achieves state-of-the-art performances on three ReID benchmarks and two occluded ReID benchmarks. Ablation study also shows that the proposed scheme and operations significantly improve the performance in various scenes. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Research of Person Re-identification Based on Deep Learning
    Wang, Haoying
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 2150 - 2157
  • [22] Person Re-Identification Based on Graph Relation Learning
    Hao Wang
    Xiaojun Bi
    Neural Processing Letters, 2021, 53 : 1401 - 1415
  • [23] Improve Person Re-Identification With Part Awareness Learning
    Huang, Houjing
    Yang, Wenjie
    Lin, Jinbin
    Huang, Guan
    Xu, Jiamiao
    Wang, Guoli
    Chen, Xiaotang
    Huang, Kaiqi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) : 7468 - 7481
  • [24] Improving person re-identification by attribute and identity learning
    Lin, Yutian
    Zheng, Liang
    Zheng, Zhedong
    Wu, Yu
    Hu, Zhilan
    Yan, Chenggang
    Yang, Yi
    PATTERN RECOGNITION, 2019, 95 : 151 - 161
  • [25] BAGGING BASED METRIC LEARNING FOR PERSON RE-IDENTIFICATION
    Yao, Bohuai
    Zhao, Zhicheng
    Liu, Kai
    Cai, Anni
    2014 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2014,
  • [26] Person re-identification based on metric learning: a survey
    Zou, Guofeng
    Fu, Guixia
    Peng, Xiang
    Liu, Yue
    Gao, Mingliang
    Liu, Zheng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (17) : 26855 - 26888
  • [27] Video Person Re-Identification by Temporal Residual Learning
    Dai, Ju
    Zhang, Pingping
    Wang, Dong
    Lu, Huchuan
    Wang, Hongyu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (03) : 1366 - 1377
  • [28] Stochastic attentions and context learning for person re-identification
    Perwaiz N.
    Fraz M.M.
    Shahzad M.
    PeerJ Computer Science, 2021, 7 : 1 - 17
  • [29] Stochastic attentions and context learning for person re-identification
    Perwaiz, Nazia
    Fraz, Muhammad Moazam
    Shahzad, Muhammad
    PEERJ COMPUTER SCIENCE, 2021,
  • [30] Similarity learning with deep CRF for person re-identification
    Xiang, Jun
    Huang, Ziyuan
    Jiang, Xiaoping
    Hou, Jianhua
    PATTERN RECOGNITION, 2023, 135