Calcium Input Frequency, Duration and Amplitude Differentially Modulate the Relative Activation of Calcineurin and CaMKII

被引:79
作者
Li, Lu [1 ]
Stefan, Melanie I. [1 ]
Le Novere, Nicolas [1 ]
机构
[1] EMBL European Bioinformat Inst, Hinxton, England
关键词
LONG-TERM POTENTIATION; PROTEIN-KINASE-II; BIDIRECTIONAL SYNAPTIC PLASTICITY; NMDA RECEPTORS; CALMODULIN-BINDING; NEURONAL PHOSPHOPROTEIN; CA-2+ CALMODULIN; RAT-BRAIN; AREA CA1; DARPP-32;
D O I
10.1371/journal.pone.0043810
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
NMDA receptor dependent long-term potentiation (LTP) and long-term depression (LTD) are two prominent forms of synaptic plasticity, both of which are triggered by post-synaptic calcium elevation. To understand how calcium selectively stimulates two opposing processes, we developed a detailed computational model and performed simulations with different calcium input frequencies, amplitudes, and durations. We show that with a total amount of calcium ions kept constant, high frequencies of calcium pulses stimulate calmodulin more efficiently. Calcium input activates both calcineurin and Ca2+/calmodulin-dependent protein kinase II (CaMKII) at all frequencies, but increased frequencies shift the relative activation from calcineurin to CaMKII. Irrespective of amplitude and duration of the inputs, the total amount of calcium ions injected adjusts the sensitivity of the system to calcium input frequencies. At a given frequency, the quantity of CaMKII activated is proportional to the total amount of calcium. Thus, an input of a small amount of calcium at high frequencies can induce the same activation of CaMKII as a larger amount, at lower frequencies. Finally, the extent of activation of CaMKII signals with high calcium frequency is further controlled by other factors, including the availability of calmodulin, and by the potency of phosphatase inhibitors.
引用
收藏
页数:17
相关论文
共 104 条
[1]   THE STRUCTURE OF THE B-SUBUNIT OF CALCINEURIN [J].
AITKEN, A ;
KLEE, CB ;
COHEN, P .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1984, 139 (03) :663-671
[2]   RANGE OF MESSENGER ACTION OF CALCIUM-ION AND INOSITOL 1,4,5-TRISPHOSPHATE [J].
ALLBRITTON, NL ;
MEYER, T ;
STRYER, L .
SCIENCE, 1992, 258 (5089) :1812-1815
[3]   CaMKII: a biochemical bridge linking accumbens dopamine and glutamate systems in cocaine seeking [J].
Anderson, Sharon M. ;
Famous, Katie R. ;
Sadri-Vakili, Ghazaleh ;
Kumaresan, Vidhya ;
Schmidt, Heath D. ;
Bass, Caroline E. ;
Terwilliger, Ernest F. ;
Cha, Jang-Ho J. ;
Pierce, R. Christopher .
NATURE NEUROSCIENCE, 2008, 11 (03) :344-353
[4]   LONG-TERM DEPRESSION OF EXCITATORY SYNAPTIC TRANSMISSION AND ITS RELATIONSHIP TO LONG-TERM POTENTIATION [J].
ARTOLA, A ;
SINGER, W .
TRENDS IN NEUROSCIENCES, 1993, 16 (11) :480-487
[5]   STRUCTURE OF CALMODULIN REFINED AT 2.2 A RESOLUTION [J].
BABU, YS ;
BUGG, CE ;
COOK, WJ .
JOURNAL OF MOLECULAR BIOLOGY, 1988, 204 (01) :191-204
[6]   3-DIMENSIONAL STRUCTURE OF CALMODULIN [J].
BABU, YS ;
SACK, JS ;
GREENHOUGH, TJ ;
BUGG, CE ;
MEANS, AR ;
COOK, WJ .
NATURE, 1985, 315 (6014) :37-40
[7]   SPATIALLY RESOLVED DYNAMICS OF CAMP AND PROTEIN KINASE-A SUBUNITS IN APLYSIA SENSORY NEURONS [J].
BACSKAI, BJ ;
HOCHNER, B ;
MAHAUTSMITH, M ;
ADAMS, SR ;
KAANG, BK ;
KANDEL, ER ;
TSIEN, RY .
SCIENCE, 1993, 260 (5105) :222-226
[8]   Subunit-specific NMDA receptor trafficking to synapses [J].
Barria, A ;
Malinow, R .
NEURON, 2002, 35 (02) :345-353
[9]   Biochemical signaling networks decode temporal patterns of synaptic input [J].
Bhalla, US .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2002, 13 (01) :49-62
[10]   The kinetics of Ca2+-Dependent switching in a Calmodulin-IQ domain complex [J].
Black, D. J. ;
Selfridge, J. Eva ;
Persechini, Anthony .
BIOCHEMISTRY, 2007, 46 (46) :13415-13424