Star discrepancy estimates for digital (t, m, 2)-nets and digital (t, 2)-sequences over Z2

被引:2
作者
Dick, J [1 ]
Kritzer, P
机构
[1] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
[2] Salzburg Univ, Dept Math, A-5020 Salzburg, Austria
基金
澳大利亚研究理事会;
关键词
digital; (t; m; s)-nets; s)-sequences; star discrepancy;
D O I
10.1007/s10474-005-0243-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove upper bounds on the star discrepancy of digital (t, M, 2)-nets and (t, 2)-sequences over Z(2). The main tool is a decomposition lemma for digital (t, m, 2)-nets, which states that every digital (t, m, 2)-net is just the union of 2(t) digitally shifted digital (0, m - t, 2)-nets. Using this result we generalize upper bounds on the star discrepancy of digital (0, m, 2)-nets and (0, 2)-sequences.
引用
收藏
页码:239 / 254
页数:16
相关论文
共 5 条
[1]   EXTREME AND L2 DISCREPANCIES OF SOME PLANE SETS [J].
HALTON, JH ;
ZAREMBA, SK .
MONATSHEFTE FUR MATHEMATIK, 1969, 73 (04) :316-&
[2]  
KUIPERS L, 1974, UNIFORM DISTRIBUTION
[3]   Sums of distances to the nearest integer and the discrepancy of digital nets [J].
Larcher, G ;
Pillichshammer, F .
ACTA ARITHMETICA, 2003, 106 (04) :379-408
[4]  
Niederreiter H., 1992, CBMS NSF SERIES APPL, V63
[5]   Improved upper bounds for the star discrepancy of digital nets in dimension 3 [J].
Pillichshammer, F .
ACTA ARITHMETICA, 2003, 108 (02) :167-189