Resonance from Contactless Ultrasound in Alloy Melts

被引:4
作者
Tonry, C. E. H. [1 ]
Djambazov, G. [1 ]
Dybalska, A. [2 ]
Bojarevics, V [1 ]
Griffiths, W. D. [2 ]
Pericleous, K. A. [1 ]
机构
[1] Univ Greenwich, Computat Sci & Engn Grp, Pk Row, London SE10 9LS, England
[2] Univ Birmingham, Sch Met & Mat, Birmingham B15 2TT, W Midlands, England
来源
LIGHT METALS 2019 | 2019年
基金
英国工程与自然科学研究理事会;
关键词
Ultrasonic cavitation; Electromagnetism; Contactless ultrasound; Alloy melts; Resonance; ACOUSTIC CAVITATION;
D O I
10.1007/978-3-030-05864-7_196
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Contactless ultrasound uses Lorentz forces from a secondary coil to induce ultrasonic vibrations in alloy melts. To achieve pressures high enough for cavitation, resonance is required. However, the prediction of the resonant modes for a melt in a crucible is complex, due to the transmission and reflection of sound within the crucible walls. Two acoustic models, one solving a simplified momentum equation in the time domain, the other solving the Helmholtz equation in the frequency domain are compared. The frequency domain model allows a fast sweep of frequencies for resonance tuning, and the transient model enables a more detailed analysis. Validation is against analytic test cases derived with boundary conditions specific for the liquid metal medium and against experimental data obtained in an aluminum melting crucible. Results confirm that sound transmission into the crucible walls has a significant effect on resonant frequencies and needs to be accounted for.
引用
收藏
页码:1551 / 1559
页数:9
相关论文
共 50 条
[21]   Doping Nature of Group V Elements in ZnO Single Crystals Grown from Melts at High Pressure [J].
Taibarei, Nikolai O. ;
Kytin, Vladimir G. ;
Konstantinova, Elizaveta A. ;
Kulbachinskii, Vladimir A. ;
Shalygina, Olga A. ;
Pavlikov, Alexander V. ;
Savilov, Serguei V. ;
Tafeenko, Viktor A. ;
Mukhanov, Vladimir A. ;
Solozhenko, Vladimir L. ;
Baranov, Andrei N. .
CRYSTAL GROWTH & DESIGN, 2022, 22 (04) :2452-2461
[22]   Anatomy of the ρ resonance from lattice QCD at the physical point [J].
孙玮 ;
Andrei Alexandru ;
陈莹 ;
Terrence Draper ;
刘朝峰 ;
杨一玻 .
Chinese Physics C, 2018, (06) :20-26
[23]   From metaphor to theory: the role of resonance in perceptual learning [J].
Raja, Vicente .
ADAPTIVE BEHAVIOR, 2019, 27 (06) :405-421
[24]   Piezoelectric coefficients obtained from the resonance admittance circle [J].
Rivera, JP .
FERROELECTRICS, 1999, 224 (1-4) :533-540
[25]   Dynamical transport of asteroid fragments from the ν6 resonance [J].
Ito, Takashi ;
Malhotra, Renu .
MERCURY, MARS AND SATURN, 2006, 38 (04) :817-+
[26]   ULTRASOUND ASSISTED PRODUCTION OF METAL FOAM FROM POLYURETHANE PRECURSOR [J].
Zahoor, Asima ;
Mourad, Abdel-Hamid I. .
PROCEEDINGS OF ASME 2021 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE2021), VOL 3, 2021,
[27]   Comparison of the value of ultrasound and enhanced magnetic resonance imaging in judging cervical lymph node metastasis in patients with oral cancer [J].
Li, Yixuan ;
Su, Xuan ;
Yao, Fan ;
Wu, Tong ;
Peng, Jin ;
Yang, Ankui .
BULLETIN DU CANCER, 2021, 108 (12) :1085-1090
[28]   The effect of ultrasound on the treatment of domestic wastewater from organic and biological contamination [J].
Vashkurak, Uliana ;
Shevchuk, Liliya ;
Aftanaziv, Ivan ;
Romaniv, Anna .
FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY, 2020, 8 (01) :125-132
[29]   Sodium Atom Emission from Aqueous Surfactant Solutions Exposed to Ultrasound [J].
Sostaric, Joe Z. ;
Ashokkumar, Muthupandian ;
Grieser, Franz .
LANGMUIR, 2016, 32 (47) :12387-12393
[30]   From earthquakes to good vibes: Transformations through a resonance process [J].
Alvim, Antonio .
INTERNATIONAL FORUM OF PSYCHOANALYSIS, 2016, 25 (02) :143-148