Functional decompositions on vector-valued function spaces via operators

被引:3
作者
Wootijirattikal, Titarii [1 ,2 ]
Ong, Sing-Cheong [3 ]
Rakbud, Jitti [4 ]
机构
[1] Ubon Ratchathani Univ, Dept Math Stat & Comp, Fac Sci, Ubon Ratchathani 34190, Thailand
[2] CHE, Ctr Excellence Math, Bangkok 10400, Thailand
[3] Cent Michigan Univ, Dept Math, Mt Pleasant, MI 48859 USA
[4] Silpakorn Univ, Dept Math, Fac Sci, Nakhon Pathom, Thailand
关键词
Banach space; C*-algebra; State space; Weak* topology; M-IDEAL; BANACH ALGEBRAS; L(X);
D O I
10.1016/j.jmaa.2011.12.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a Banach space with a generalized basis. The Banach algebra B(X) of bounded linear operators on X is used to construct Banach spaces, M and K, of weak* continuous functions from the state space of a C*-algebra to B(X). If the basis satisfies certain properties, we prove that the dual space of M has a decomposition analogous to that of the dual space of B(X). In terms of the notion of M-ideal introduced by Alfsen and Effros, the subspace K is an M-ideal in the Banach space M. For the cases of c(0) and l(p), 1 < p < infinity, we also prove an analogue of the result that trace(AB) = trace(BA) for a trace class operator A and a bounded operator B on a Hilbert space. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1173 / 1190
页数:18
相关论文
共 13 条
[1]  
ALFSEN EM, 1972, ANN MATH, V96, P98, DOI 10.2307/1970895
[2]  
[Anonymous], 1993, LECT NOTES MATH
[3]  
CHO CM, 1986, J OPERAT THEOR, V16, P245
[4]  
CHO CM, 1985, P AM MATH SOC, V93, P466
[6]   DECOMPOSITION FOR B(X)] AND UNIQUE HAHN-BANACH EXTENSIONS [J].
HENNEFELD, J .
PACIFIC JOURNAL OF MATHEMATICS, 1973, 46 (01) :197-199
[7]  
Kadison R. V., 1983, Fundamentals of the Theory of Operator Algebras I
[8]  
Megginson R.E., 2012, An introduction to Banach space theory, V183
[9]  
Rudin W., 1987, REAL COMPLEX ANAL
[10]  
SCHATTEN R, 1960, ERGEB MATH GRENZGEB, V27