A general moving detection method using dual-target nonparametric background model

被引:15
作者
Zhong, Zuofeng [1 ,2 ,5 ]
Wen, Jiajun [3 ,4 ,5 ,6 ]
Zhang, Bob [7 ]
Xu, Yong [1 ,2 ]
机构
[1] Harbin Inst Technol Shenzhen, Biocomp Res Ctr, Shenzhen 518055, Peoples R China
[2] Harbin Inst Technol, Shenzhen Med Biometr Percept & Anal Engn Lab, Shenzhen 518055, Guangdong, Peoples R China
[3] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518055, Peoples R China
[4] Shenzhen Univ, Natl Engn Lab Big Data Syst Comp Technol, Shenzhen 518060, Peoples R China
[5] Hong Kong Polytech Univ, Inst Text & Clothing, Hong Kong, Peoples R China
[6] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518055, Peoples R China
[7] Univ Macau, Dept Comp & Informat Sci, Taipa, Macao, Peoples R China
基金
中国博士后科学基金;
关键词
Moving detection; Background modeling; Video surveillance; OBJECT DETECTION; FOREGROUND OBJECTS; MOTION DETECTION; SUBTRACTION; TRACKING; DECOMPOSITION; TENSOR;
D O I
10.1016/j.knosys.2018.10.031
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Designing a general motion detection method that has self-adaptive parameters remains a challenging issue in video surveillance. To address this problem, in this paper, a dual-target nonparametric background modeling (DTNBM) method is proposed. This model integrates the gray value and gradient to represent each pixel, which enhances the discriminative ability of the background model. We design a simple but effective classification rule for determining whether a pixel belongs to a motionless object or dynamic background. Moreover, DTNBM provides suitable updating strategies for the two categories of pixels. Most importantly, DTNBM utilizes a dual-target updating strategy to preserve the completeness of static objects and prevent false detections that are caused by background initialization or frequent background variations. To improve the updating effectiveness and efficiency, we combine similar and random schemes for background updating. The key features of DTNBM include nonparametric modeling and a controlling threshold adaptation process, which render our method easy to use on various scenarios. Comprehensive experiments have been conducted, and the results demonstrate that DTNBM outperforms the state-of-the-art methods in foreground detection. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:85 / 95
页数:11
相关论文
共 57 条
  • [1] [Anonymous], P IEEE C COMPUTER VI
  • [2] ViBe: A Universal Background Subtraction Algorithm for Video Sequences
    Barnich, Olivier
    Van Droogenbroeck, Marc
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (06) : 1709 - 1724
  • [3] Berjon D., 2017, PATTERN RECOGNIT
  • [4] Bouwmans T., 2019, COMPUT SCI REV, V11-12, P32
  • [5] Decomposition into low-rank plus additive matrices for background/foreground separation: A review for a comparative evaluation with a large-scale dataset
    Bouwmans, Thierry
    Sobral, Andrews
    Javed, Sajid
    Jung, Soon Ki
    Zahzah, El-Hadi
    [J]. COMPUTER SCIENCE REVIEW, 2017, 23 : 1 - 71
  • [6] On the role and the importance of features for background modeling and foreground detection
    Bouwmans, Thierry
    Silva, Caroline
    Marghes, Cristina
    Zitouni, Mohammed Sami
    Bhaskar, Harish
    Frelicot, Carl
    [J]. COMPUTER SCIENCE REVIEW, 2018, 28 : 26 - 91
  • [7] Robust PCA via Principal Component Pursuit: A review for a comparative evaluation in video surveillance
    Bouwmans, Thierry
    Zahzah, El Hadi
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2014, 122 : 22 - 34
  • [8] Brutzer S., 2011, 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), P1937, DOI 10.1109/CVPR.2011.5995508
  • [9] Candes E., 2011, J ACM, V58, P1809
  • [10] Total Variation Regularized Tensor RPCA for Background Subtraction From Compressive Measurements
    Cao, Wenfei
    Wang, Yao
    Sun, Jian
    Meng, Deyu
    Yang, Can
    Cichocki, Andrzej
    Xu, Zongben
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (09) : 4075 - 4090