Crossing the Resolution Limit in Near-Infrared Imaging of Silicon Chips: Targeting 10-nm Node Technology

被引:14
作者
Agarwal, Krishna [1 ]
Chen, Rui [2 ]
Koh, Lian Ser [3 ]
Sheppard, Colin J. R. [4 ]
Chen, Xudong [2 ]
机构
[1] Singapore Alliance Res & Technol SMART Ctr, Singapore 138602, Singapore
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117548, Singapore
[3] Semicaps Private Ltd, Singapore 139959, Singapore
[4] Ist Italiano Tecnol, I-16163 Genoa, Italy
来源
PHYSICAL REVIEW X | 2015年 / 5卷 / 02期
基金
新加坡国家研究基金会;
关键词
SOLID IMMERSION LENS; SPHERICAL-ABERRATION CORRECTION; SUBSURFACE MICROSCOPY; INTEGRATED-CIRCUITS; SYSTEM; POLARIZATION; LIGHT; SPOT;
D O I
10.1103/PhysRevX.5.021014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The best reported resolution in optical failure analysis of silicon chips is 120-nm half pitch demonstrated by Semicaps Private Limited, whereas the current and future industry requirement for 10-nm node technology is 100-nm half pitch. We show the first experimental evidence for resolution of features with 100-nm half pitch buried in silicon (lambda/10.6), thus fulfilling the industry requirement. These results are obtained using near-infrared reflection-mode imaging using a solid immersion lens. The key novel feature of our approach is the choice of an appropriately sized collection pinhole. Although it is usually understood that, in general, resolution is improved by using the smallest pinhole consistent with an adequate signal level, it is found that in practice for silicon chips there is an optimum pinhole size, determined by the generation of induced currents in the sample. In failure analysis of silicon chips, nondestructive imaging is important to avoid disturbing the functionality of integrated circuits. High-resolution imaging techniques like SEM or TEM require the transistors to be exposed destructively. Optical microscopy techniques may be used, but silicon is opaque in the visible spectrum, mandating the use of near-infrared light and thus poor resolution in conventional optical microscopy. We expect our result to change the way semiconductor failure analysis is performed.
引用
收藏
页数:9
相关论文
共 28 条
[1]  
[Anonymous], 2013, Technical report
[2]  
[Anonymous], 2012, Technical Report, Patent No. 8072699
[3]   Sub-λ/10 spot size in semiconductor solid immersion lens microscopy [J].
Banaee, Mohamadreza G. ;
Uenlue, M. Selim ;
Goldberg, Bennett B. .
OPTICS COMMUNICATIONS, 2014, 315 :108-111
[4]  
Chen R., 2013, THESIS NATL U SINGAP
[5]   Imaging using cylindrical vector beams in a high-numerical-aperture microscopy system [J].
Chen, Rui ;
Agarwal, Krishna ;
Sheppard, Colin J. R. ;
Chen, Xudong .
OPTICS LETTERS, 2013, 38 (16) :3111-3114
[6]   A complete and computationally efficient numerical model of aplanatic solid immersion lens scanning microscope [J].
Chen, Rui ;
Agarwal, Krishna ;
Sheppard, Colin J. R. ;
Phang, Jacob C. H. ;
Chen, Xudong .
OPTICS EXPRESS, 2013, 21 (12) :14316-14330
[7]   Complete modeling of subsurface microscopy system based on aplanatic solid immersion lens [J].
Chen, Rui ;
Agarwal, Krishna ;
Zhong, Yu ;
Sheppard, Colin J. R. ;
Phang, Jacob C. H. ;
Chen, Xudong .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2012, 29 (11) :2350-2359
[8]   Resolution of aplanatic solid immersion lens based microscopy [J].
Chen, Rui ;
Agarwal, Krishna ;
Sheppard, Colin J. R. ;
Phang, Jacob C. H. ;
Chen, Xudong .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2012, 29 (06) :1059-1070
[9]   High aperture focusing through a spherical interface: Application to refractive solid immersion lens (RSIL) for subsurface imaging [J].
Goh, Szu Huat ;
Sheppard, Colin J. R. .
OPTICS COMMUNICATIONS, 2009, 282 (05) :1036-1041
[10]   Chromatic and spherical aberration correction for silicon aplanatic solid immersion lens for fault isolation and photon emission microscopy of integrated circuits [J].
Goldberg, B. B. ;
Yurt, A. ;
Lu, Y. ;
Ramsay, E. ;
Koeklue, F. H. ;
Mertz, J. ;
Bifano, T. G. ;
Uenlue, M. S. .
MICROELECTRONICS RELIABILITY, 2011, 51 (9-11) :1637-1639