Differentiability properties of functions from higher-order Orlicz-Sobolev spaces

被引:3
作者
Cianchi, Andrea [1 ]
Randolfi, Monia [2 ]
机构
[1] Univ Firenze, Dipartimento Matemat U Dini, I-50122 Florence, Italy
[2] Univ Firenze, Dipartimento Matemat U Dini, I-50134 Florence, Italy
关键词
Orlicz-Sobolev spaces; Lebesgue points; Pointwise differentiability; Approximate differentiability; EXPONENTIAL INTEGRABILITY; GRADIENTS; EXTENSION;
D O I
10.1016/j.na.2011.12.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze pointwise differentiability properties of functions from (local) Orlicz-Sobolev spaces W-loc(m,A)(Omega) on an open subset Omega of R-n, n >= 2. A necessary and sufficient condition on the order of differentiation m and on the Young function A is exhibited for any function in W-loc(m,A)(Omega) to admit a differential of order m a. e. in Omega. An optimal approximate differentiability property in integral and norm form is established when such a condition fails. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3322 / 3338
页数:17
相关论文
共 27 条