Perturbation Dynamics of the Rumen Microbiota in Response to Exogenous Butyrate

被引:229
作者
Li, Robert W. [1 ]
Wu, Sitao [2 ]
Baldwin, Ransom L. [1 ]
Li, Weizhong [2 ]
Li, Congjun [1 ]
机构
[1] ARS, USDA, Bovine Funct Genom Lab, Beltsville, MD USA
[2] Univ Calif San Diego, Ctr Res Biol Syst, San Diego, CA 92103 USA
关键词
VOLATILE FATTY-ACIDS; BUTYRIVIBRIO-FIBRISOLVENS; RUMINAL BUTYRATE; RESISTANT STARCH; FAST PROGRAM; MILK-YIELD; METABOLISM; BACTERIA; COW; ABSORPTION;
D O I
10.1371/journal.pone.0029392
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The capacity of the rumen microbiota to produce volatile fatty acids (VFAs) has important implications in animal well-being and production. We investigated temporal changes of the rumen microbiota in response to butyrate infusion using pyrosequencing of the 16S rRNA gene. Twenty one phyla were identified in the rumen microbiota of dairy cows. The rumen microbiota harbored 54.5 +/- 6.1 genera (mean +/- SD) and 127.3 +/- 4.4 operational taxonomic units (OTUs), respectively. However, the core microbiome comprised of 26 genera and 82 OTUs. Butyrate infusion altered molar percentages of 3 major VFAs. Butyrate perturbation had a profound impact on the rumen microbial composition. A 72 h-infusion led to a significant change in the numbers of sequence reads derived from 4 phyla, including 2 most abundant phyla, Bacteroidetes and Firmicutes. As many as 19 genera and 43 OTUs were significantly impacted by butyrate infusion. Elevated butyrate levels in the rumen seemingly had a stimulating effect on butyrate-producing bacteria populations. The resilience of the rumen microbial ecosystem was evident as the abundance of the microorganisms returned to their pre-disturbed status after infusion withdrawal. Our findings provide insight into perturbation dynamics of the rumen microbial ecosystem and should guide efforts in formulating optimal uses of probiotic bacteria treating human diseases.
引用
收藏
页数:11
相关论文
共 35 条
[1]   Comparative Analysis of Human Gut Microbiota by Barcoded Pyrosequencing [J].
Andersson, Anders F. ;
Lindberg, Mathilda ;
Jakobsson, Hedvig ;
Backhed, Fredrik ;
Nyren, Pal ;
Engstrand, Lars .
PLOS ONE, 2008, 3 (07)
[2]   Phylogenetic relationships of butyrate-producing bacteria from the human gut [J].
Barcenilla, A ;
Pryde, SE ;
Martin, JC ;
Duncan, SH ;
Stewart, CS ;
Henderson, C ;
Flint, HJ .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (04) :1654-1661
[3]   Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut [J].
Belenguer, Alvaro ;
Duncan, Sylvia H. ;
Calder, A. Graham ;
Holtrop, Grietje ;
Louis, Petra ;
Lobley, Gerald E. ;
Flint, Harry J. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (05) :3593-3599
[5]   OCCURRENCE, ABSORPTION AND METABOLISM OF SHORT CHAIN FATTY-ACIDS IN THE DIGESTIVE-TRACT OF MAMMALS [J].
BUGAUT, M .
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 1987, 86 (03) :439-472
[6]   Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces [J].
Duncan, Sylvia H. ;
Belenguer, Alvaro ;
Holtrop, Grietje ;
Johnstone, Alexandra M. ;
Flint, Harry J. ;
Lobley, Gerald E. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2007, 73 (04) :1073-1078
[7]   Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data [J].
Hamady, Micah ;
Lozupone, Catherine ;
Knight, Rob .
ISME JOURNAL, 2010, 4 (01) :17-27
[8]   Metagenomic Discovery of Biomass-Degrading Genes and Genomes from Cow Rumen [J].
Hess, Matthias ;
Sczyrba, Alexander ;
Egan, Rob ;
Kim, Tae-Wan ;
Chokhawala, Harshal ;
Schroth, Gary ;
Luo, Shujun ;
Clark, Douglas S. ;
Chen, Feng ;
Zhang, Tao ;
Mackie, Roderick I. ;
Pennacchio, Len A. ;
Tringe, Susannah G. ;
Visel, Axel ;
Woyke, Tanja ;
Wang, Zhong ;
Rubin, Edward M. .
SCIENCE, 2011, 331 (6016) :463-467
[9]   EFFECT OF INCREASING RUMINAL BUTYRATE ON MILK-YIELD AND BLOOD-CONSTITUENTS IN DAIRY-COWS FED A GRASS SILAGE-BASED DIET [J].
HUHTANEN, P ;
MIETTINEN, H ;
YLINEN, M .
JOURNAL OF DAIRY SCIENCE, 1993, 76 (04) :1114-1124
[10]  
Kristensen NB, 2004, J ANIM SCI, V82, P2033