Superresolution border segmentation and measurement in remote sensing images

被引:46
作者
Cipolletti, Marina P. [1 ,2 ,3 ]
Delrieux, Claudio A. [1 ,2 ]
Perillo, Gerardo M. E. [3 ,4 ]
Cintia Piccolo, M. [3 ,5 ]
机构
[1] Univ Nacl Sur, Consejo Nacl Invest Cient & Tecnol, Inst Invest Ingn Elect, RA-8000 Bahia Blanca, Buenos Aires, Argentina
[2] Univ Nacl Sur, Consejo Nacl Invest Cient & Tecnol, Dpto Ing Elect & Comp, RA-8000 Bahia Blanca, Buenos Aires, Argentina
[3] Univ Nacl Sur, Consejo Nacl Invest Cient & Tecnol, Inst Argentino Oceanog, RA-8000 Bahia Blanca, Buenos Aires, Argentina
[4] Univ Nacl Sur, Dept Geol, RA-8000 Bahia Blanca, Buenos Aires, Argentina
[5] Univ Nacl Sur, Dept Geog & Turismo, RA-8000 Bahia Blanca, Buenos Aires, Argentina
关键词
Segmentation; Measurement; Perimeter; Superresolution;
D O I
10.1016/j.cageo.2011.07.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Segmentation and measurement of linear characteristics in remote sensing imagery are among the first stages in several geomorphologic studies, including the length estimation of geographic features such as perimeters, coastal lines, and borders. However, unlike area measurement algorithms, widely used methods for perimeter estimation in digital images have high systematic errors. No precision improvement can be achieved with finer spatial resolution images because of the inherent geometrical inaccuracies they commit. In this work, a superresolution border segmentation and measurement algorithm is presented. The method is based on minimum distance segmentation over the initial image, followed by contour tracking using a superresolution enhancement of the marching squares algorithm. Thorough testing with synthetic and validated field images shows that this algorithm outperforms traditional border measuring methods, regardless of the image resolution or the orientation, size, and shape of the object to be analyzed. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:87 / 96
页数:10
相关论文
共 25 条
[1]  
[Anonymous], PROCESSING REMOTE SE
[2]  
[Anonymous], 2006, REMOTE SENSING DIGIT
[3]  
Campbell J., 1996, Introduction to Remote Sensing, V2nd
[4]   Sub-pixel edge detection based on an improved moment [J].
Da, Feipeng ;
Zhang, Hu .
IMAGE AND VISION COMPUTING, 2010, 28 (12) :1645-1658
[5]  
Dunkelberger K., 1985, P IEEE INT C ROB AUT, V2, P22
[6]  
Electronic Computers O.N., 1960, Electronic Computers, IRE Transactions on, P260, DOI DOI 10.1109/TEC.1961.5219197
[7]  
Freeman H., 1970, PICTURE PROCESSING P, P241
[8]  
Gonzalez R.C., 1996, Digital image processing. 1992
[9]   LOCAL PROPERTIES OF BINARY IMAGES IN 2 DIMENSIONS [J].
GRAY, SB .
IEEE TRANSACTIONS ON COMPUTERS, 1971, C 20 (05) :551-&
[10]  
Jensen J.R., 2000, INTRO DIGITAL IMAGE, VSecond