SUCAG: Stochastic Unbiased Curvature-aided Gradient Method for Distributed Optimization

被引:0
|
作者
Wai, Hoi-To [1 ]
Freris, Nikolaos M. [2 ,3 ]
Nedic, Angelia [1 ]
Scaglione, Anna [1 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85281 USA
[2] New York Univ Abu Dhabi, Div Engn, Abu Dhabi, U Arab Emirates
[3] NYU, Tandon Sch Engn, Brooklyn, NY USA
来源
2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC) | 2018年
关键词
Distributed optimization; Incremental methods; Asynchronous algorithms; Randomized algorithms; Multi-agent systems; Machine learning; SUBGRADIENT METHODS; CLOCKS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose and analyze a new stochastic gradient method, which we call Stochastic Unbiased Curvature-aided Gradient (SUCAG), for finite sum optimization problems. SUCAG constitutes an unbiased total gradient tracking technique that uses Hessian information to accelerate convergence. We analyze our method under the general asynchronous model of computation, in which each function is selected infinitely often with possibly unbounded (but sublinear) delay. For strongly convex problems, we establish linear convergence for the SUCAG method. When the initialization point is sufficiently close to the optimal solution, the established convergence rate is only dependent on the condition number of the problem, making it strictly faster than the known rate for the SAGA method. Furthermore, we describe a Markov-driven approach of implementing the SUCAG method in a distributed asynchronous multi-agent setting, via gossiping along a random walk on an undirected communication graph. We show that our analysis applies as long as the graph is connected and, notably, establishes an asymptotic linear convergence rate that is robust to the graph topology. Numerical results demonstrate the merits of our algorithm over existing methods.
引用
收藏
页码:1751 / 1756
页数:6
相关论文
共 50 条
  • [1] S-DIGing: A Stochastic Gradient Tracking Algorithm for Distributed Optimization
    Li, Huaqing
    Zheng, Lifeng
    Wang, Zheng
    Yan, Yu
    Feng, Liping
    Guo, Jing
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2022, 6 (01): : 53 - 65
  • [2] Stochastic Strongly Convex Optimization via Distributed Epoch Stochastic Gradient Algorithm
    Yuan, Deming
    Ho, Daniel W. C.
    Xu, Shengyuan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (06) : 2344 - 2357
  • [3] ON DISTRIBUTED STOCHASTIC GRADIENT ALGORITHMS FOR GLOBAL OPTIMIZATION
    Swenson, Brian
    Sridhar, Anirudh
    Poor, H. Vincent
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 8594 - 8598
  • [4] Edge-Based Stochastic Gradient Algorithm for Distributed Optimization
    Wang, Zheng
    Li, Huaqing
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2020, 7 (03): : 1421 - 1430
  • [5] An accelerated distributed stochastic gradient method with momentum
    Huang, Kun
    Pu, Shi
    Nedic, Angelia
    MATHEMATICAL PROGRAMMING, 2025,
  • [6] Distributed Adaptive Gradient Algorithm With Gradient Tracking for Stochastic Nonconvex Optimization
    Han, Dongyu
    Liu, Kun
    Lin, Yeming
    Xia, Yuanqing
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (09) : 6333 - 6340
  • [7] Stochastic sub-gradient algorithm for distributed optimization with random sleep scheme
    Yi P.
    Hong Y.
    Control Theory and Technology, 2015, 13 (04) : 333 - 347
  • [8] CONTROLLING STOCHASTIC GRADIENT DESCENT USING STOCHASTIC APPROXIMATION FOR ROBUST DISTRIBUTED OPTIMIZATION
    Jain, Adit
    Krishnamurthy, Vikram
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2025, 15 (01): : 173 - 195
  • [9] A Distributed Stochastic Proximal-Gradient Algorithm for Composite Optimization
    Niu, Youcheng
    Li, Huaqing
    Wang, Zheng
    Lu, Qingguo
    Xia, Dawen
    Ji, Lianghao
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2021, 8 (03): : 1383 - 1393
  • [10] A stochastic gradient tracking algorithm with adaptive momentum for distributed optimization
    Li, Yantao
    Hu, Hanqing
    Zhang, Keke
    Lu, Qingguo
    Deng, Shaojiang
    Li, Huaqing
    NEUROCOMPUTING, 2025, 637