Degree frequencies in the minimal spanning tree and dimension identification

被引:1
作者
Brito, MR
Quiroz, AJ
机构
[1] Univ Simon Bolivar, Dept Comp Cientifico & Estadist, Caracas 1080A, Venezuela
[2] Univ Simon Bolivar, Dept Matemat, Caracas 1080A, Venezuela
关键词
proximity data; multidimensional scaling; minimal spanning tree; dimensionality reduction;
D O I
10.1081/STA-120026579
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss the application of linear combinations of the degree frequencies in the minimal spanning tree to the problem of identifying the appropriate dimension for a data set from its interpoint distance matrix. This graph-theoretical methodology, of very low computational cost, can be of aid in the problem of Multidimensional Scaling and in dimensionality reduction. Results of Lee [Lee, S. (1999). The central limit theorem for euclidean minimal spanning trees II. Adv. Appl. Probability 31(4): 969-984] imply that the procedure proposed here is asymptotically consistent.
引用
收藏
页码:99 / 105
页数:7
相关论文
共 15 条
[11]   GENERALIZATION OF GAP TEST FOR DETECTION OF MULTIVARIATE OUTLIERS [J].
ROHLF, FJ .
BIOMETRICS, 1975, 31 (01) :93-101
[12]   ON THE NUMBER OF LEAVES OF A EUCLIDEAN MINIMAL SPANNING TREE [J].
STEELE, JM ;
SHEPP, LA ;
EDDY, WF .
JOURNAL OF APPLIED PROBABILITY, 1987, 24 (04) :809-826
[13]  
TABAKIS E, 1992, THESIS MIT CARACAS
[14]  
TABAKIS E, 1996, DATA KNOWLEDGE, P222