Fractional Hardy-Sobolev inequalities on half spaces

被引:7
作者
Musina, Roberta [1 ]
Nazarov, Alexander I. [2 ,3 ]
机构
[1] Univ Udine, Dipartimento Matemat Informat, Via Sci, I-20633100 Udine, Italy
[2] Steklov Inst, St Petersburg Dept, Fontanka 27, St Petersburg 191023, Russia
[3] St Petersburg State Univ, Univ Skii Pr 28, St Petersburg 198504, Russia
关键词
Fractional Laplace operators; Sobolev inequality; Hardy inequality; MAZYA INEQUALITY; CONSTANT;
D O I
10.1016/j.na.2018.07.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the existence of extremals for Hardy-Sobolev inequalities involving the Dirichlet fractional Laplacian (-Delta)(s) of order s is an element of (0, 1) on half-spaces. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:32 / 40
页数:9
相关论文
共 50 条
[31]   Sharp Trace Hardy–Sobolev-Maz’ya Inequalities and the Fractional Laplacian [J].
Stathis Filippas ;
Luisa Moschini ;
Achilles Tertikas .
Archive for Rational Mechanics and Analysis, 2013, 208 :109-161
[32]   Cylindrical symmetry of extremals of a Hardy-Sobolev inequality [J].
Mancini G. ;
Sandeep K. .
Annali di Matematica Pura ed Applicata, 2004, 183 (2) :165-172
[33]   Hardy-Sobolev equations on compact Riemannian manifolds [J].
Jaber, Hassan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 103 :39-54
[34]   Quasilinear Elliptic Systems Involving Critical Hardy-Sobolev and Sobolev Exponents [J].
Kang, Dongsheng ;
Kang, Yangguang .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (01) :1-17
[35]   Sobolev and Hardy-Littlewood-Sobolev inequalities [J].
Dolbeault, Jean ;
Jankowiak, Gaspard .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (06) :1689-1720
[36]   Hardy-Sobolev-Maz'ya inequalities for arbitrary domains [J].
Frank, Rupert L. ;
Loss, Michael .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (01) :39-54
[37]   SOME HARDY INEQUALITIES ON HALF SPACES FOR GRUSHIN TYPE OPERATORS [J].
Xiao, Ying-Xiong .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (03) :793-807
[38]   The role of the mean curvature in a Hardy-Sobolev trace inequality [J].
Fall, Mouhamed Moustapha ;
Minlend, Ignace Aristide ;
Thiam, El Hadji Abdoulaye .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (05) :1047-1066
[39]   On the Sobolev and Hardy constants for the fractional Navier Laplacian [J].
Musina, Roberta ;
Nazarov, Alexander I. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 :123-129
[40]   Sobolev, Hardy, Gagliardo–Nirenberg, and Caffarelli–Kohn–Nirenberg-type inequalities for some fractional derivatives [J].
Aidyn Kassymov ;
Michael Ruzhansky ;
Niyaz Tokmagambetov ;
Berikbol T. Torebek .
Banach Journal of Mathematical Analysis, 2021, 15