Dilated CNN for abnormality detection in wireless capsule endoscopy images

被引:27
|
作者
Goel, Nidhi [1 ]
Kaur, Samarjeet [2 ]
Gunjan, Deepak [3 ]
Mahapatra, S. J. [3 ]
机构
[1] Indira Gandhi Delhi Tech Univ Women, Delhi, India
[2] Bharati Vidyapeeths Coll Engn, New Delhi, India
[3] All India Inst Med Sci, Dept Gastroenterol, New Delhi, India
关键词
Wireless capsule endoscopy; Convolution neural network; Abnormality detection; Feature maps; LESION DETECTION; RECOGNITION; NETWORK;
D O I
10.1007/s00500-021-06546-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Wireless capsule endoscopy is a non-invasive and painless procedure to examine the gastrointestinal tract of human body, and an experienced clinician takes 2-3 hours for complete examination. To reduce this diagnosis time, the present work proposes a lightweight CNN model for binary classification of WCE images. The proposed model has a strong backbone of CNN in the primary branch complemented by resolution preserving dilated convolution layers in secondary branches. The proposed model extracts multiple features at different scales and finally fuses them together to fetch the dominant global feature that aids in binary classification problem. A new dataset has been created in collaboration with All India Institute of Medical Sciences, Delhi. The efficacy of the proposed model has been verified using the developed dataset using various subjective and objective parameters. Feature maps generated at each branch have been thoroughly analyzed to understand the quality of learning. Thorough experimental analysis indicates that the proposed model yields an accuracy of 0.96, sensitivity of 0.93 and specificity of 0.97 on real data collected from AIIMS Delhi. To verify the efficacy of the proposed dilated CNN, extensive analysis has been done using standard KID dataset as well. For a fair comparison, these datasets have also been used for pre-trained inception net model. Thorough analysis indicates that the proposed architecture performs well both for AIIMS dataset and the standard KID dataset. Result analysis also reflects that the proposed dilated CNN architecture outperforms the performance of pre-trained inception net model.
引用
收藏
页码:1231 / 1247
页数:17
相关论文
共 50 条
  • [1] Dilated CNN for abnormality detection in wireless capsule endoscopy images
    Nidhi Goel
    Samarjeet Kaur
    Deepak Gunjan
    S. J. Mahapatra
    Soft Computing, 2022, 26 : 1231 - 1247
  • [2] Investigating the significance of color space for abnormality detection in wireless capsule endoscopy images
    Goel, Nidhi
    Kaur, Samarjeet
    Gunjan, Deepak
    Mahapatra, S. J.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 75
  • [3] Detection of abnormality in wireless capsule endoscopy images using fractal features
    Jain, Samir
    Seal, Ayan
    Ojha, Aparajita
    Krejcar, Ondrej
    Bures, Jan
    Tacheci, Ilja
    Yazidi, Anis
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 127
  • [4] A deep CNN model for anomaly detection and localization in wireless capsule endoscopy images
    Jain, Samir
    Seal, Ayan
    Ojha, Aparajita
    Yazidi, Anis
    Bures, Jan
    Tacheci, Ilja
    Krejcar, Ondrej
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 137
  • [5] Feature extraction for abnormality detection in capsule endoscopy images
    Amiri, Zahra
    Hassanpour, Hamid
    Beghdadi, Azeddine
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [6] Enhanced CNN-Based Gaze Estimation on Wireless Capsule Endoscopy Images
    Gatoula, Panagiota
    Dimas, George
    Iakovidis, Dimitris K.
    Koulaouzidis, Anastasios
    2021 IEEE 34TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2021, : 189 - 195
  • [7] Detection of Uninformative Regions in Wireless Capsule Endoscopy Images
    Alizadeh, Mandi
    Sharzehi, Kaveh
    Talebpour, Alireza
    Soltanian-Zadeh, Hamid
    Eskandari, Hoda
    Maghsoudi, Omid Haji
    2015 41ST ANNUAL NORTHEAST BIOMEDICAL ENGINEERING CONFERENCE (NEBEC), 2015,
  • [8] A CONVOLUTIONAL NEURAL NETWORK APPROACH FOR ABNORMALITY DETECTION IN WIRELESS CAPSULE ENDOSCOPY
    Sekuboyina, Anjany Kumar
    Devarakonda, Surya Teja
    Seelamantula, Chandra Sekhar
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 1057 - 1060
  • [9] Automatic Hookworm Detection in Wireless Capsule Endoscopy Images
    Wu, Xiao
    Chen, Honghan
    Gan, Tao
    Chen, Junzhou
    Ngo, Chong-Wah
    Peng, Qiang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (07) : 1741 - 1752
  • [10] Wireless Capsule Endoscopy Bleeding Images Classification Using CNN Based Model
    Rustam, Furqan
    Siddique, Muhammad Abubakar
    Siddiqui, Hafeez Ur Rehman
    Ullah, Saleem
    Mehmood, Arif
    Ashraf, Imran
    Choi, Gyu Sang
    IEEE ACCESS, 2021, 9 : 33675 - 33688