Ginzburg-Landau equation with DeGennes boundary condition

被引:19
作者
Lu, KN [1 ]
Pan, XB [1 ]
机构
[1] ZHEJIANG UNIV, CTR MATH SCI, HANGZHOU 310027, PEOPLES R CHINA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
D O I
10.1006/jdeq.1996.0114
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotic behavior of the positive solutions of the Ginzburg-Landau equation with the DeGennes boundary condition. This problem is closely related to the mathematical theory for superconductivity. We obtain the precise profile of boundary layer of the solutions and the estimates of their energy. These results are based on the uniqueness of positive solution of the limiting problem, which seems to be of independent interest. (C) 1996 Academic Press, Inc.
引用
收藏
页码:136 / 165
页数:30
相关论文
共 14 条
[1]  
[Anonymous], GINZBURG LANDAU VORT
[2]  
[Anonymous], J EXPT THEORETICAL P
[3]  
BERESTYCKI H, 1993, BOUNDARY VALUE PROBL, P27
[4]   MACROSCOPIC MODELS FOR SUPERCONDUCTIVITY [J].
CHAPMAN, SJ ;
HOWISON, SD ;
OCKENDON, JR .
SIAM REVIEW, 1992, 34 (04) :529-560
[5]   SOME NOTES ON THE METHOD OF MOVING PLANES [J].
DANCER, EN .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1992, 46 (03) :425-434
[6]  
de Gennes P. G., 1966, SUPERCONDUCTIVITY ME
[7]   ANALYSIS AND APPROXIMATION OF THE GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY [J].
DU, Q ;
GUNZBURGER, MD ;
PETERSON, JS .
SIAM REVIEW, 1992, 34 (01) :54-81
[8]  
FIFE PC, 1973, ARCH RATION MECH AN, V52, P204
[9]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[10]  
Gilbarg D., 1983, Elliptic partial differential equations of second order, V224