The Charge-Transfer States in a Stacked Nucleobase Dimer Complex: A Benchmark Study

被引:71
作者
Aquino, Adelia J. A. [1 ,2 ]
Nachtigallova, Dana [3 ,4 ]
Hobza, Pavel [3 ,4 ]
Truhlar, Donald G. [5 ,6 ]
Haettig, Christof [7 ]
Lischka, Hans [1 ,3 ,4 ]
机构
[1] Univ Vienna, Inst Theoret Chem, A-1090 Vienna, Austria
[2] Univ Nat Resources & Life Sci Vienna, Inst Soil Res, A-1190 Vienna, Austria
[3] Acad Sci Czech Republ, Inst Organ Chem & Biochem, CR-16610 Prague 6, Czech Republic
[4] Ctr Biomol & Complex Mol Syst, Prague 16610 6, Czech Republic
[5] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
[6] Univ Minnesota, Inst Supercomp, Minneapolis, MN 55455 USA
[7] Ruhr Univ Bochum, Lehrstuhl Theoret Chem, D-44801 Bochum, Germany
基金
美国国家科学基金会; 奥地利科学基金会;
关键词
charge transfer; excited states; coupled cluster; DFT; stacked nucleobases; DENSITY-FUNCTIONAL THEORY; TRANSFER EXCITED-STATES; GAUSSIAN-BASIS SETS; AB-INITIO; GAS-PHASE; THERMOCHEMICAL KINETICS; POLARIZATION PROPAGATOR; ELECTRONIC EXCITATIONS; MOLECULAR-DYNAMICS; ENERGY-TRANSFER;
D O I
10.1002/jcc.21702
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electronic singlet excitations of stacked adenine-thymine (AT) and guanine-cytosine (GC) complexes have been investigated with respect to local excitation and charge-transfer (CT) characters. Potential energy curves for rigid displacement of the nucleobases have been computed to establish the distance dependence of the CT states. The second-order algebraic diagrammatic construction [ADC(2)] method served as reference approach for comparison to a selected set of density functionals used within the time-dependent density functional theory (TD-DFT). Particular attention was dedicated to the performance of the recently developed family of M06 functionals. The calculations for the stacked complexes show that at the ADC(2) level, the lowest CT state is S-6 for the AT and as S-4 for the GC pair. At the reference geometry, the actual charge transferred is found to be 0.73 e for AT. In case of GC, this amount is much smaller (0.17 e). With increasing separation of the two nucleobases, the CT state is strongly destabilized. The M06-2X version provides a relatively good reproduction of the ADC(2) results. It avoids the serious overstabilization and overcrowding of the spectrum found with the B3LYP functional. On the other hand, M06-HF destabilizes the CT state too strongly. TD-DFT/M06-2X calculations in solution (heptane, isoquinoline, and water) using the polarizable continuum model show a stabilization of the CT state and an increase in CT character with increasing polarity of the solvent. (C) 2010 Wiley Periodicals, Inc. J Comput Chem 32: 1217-1227, 2011
引用
收藏
页码:1217 / 1227
页数:11
相关论文
共 81 条