New explicit exact solution of one type of the sine-Gordon equation with self-consistent source

被引:3
作者
Su Jun [1 ]
Xu Wei [1 ]
Duan Dong-Hai [2 ]
Xu Gen-Jiu [1 ]
机构
[1] Northwestern Polytech Univ, Sch Sci, Xian 710072, Peoples R China
[2] Weinan Teachers Univ, Sch Math & Informat Sci, Weinan 714000, Peoples R China
基金
中国国家自然科学基金;
关键词
sine-Gordon equation; self-consistent source; generalized binary Darboux transformation; complexiton solution; TODA LATTICE EQUATION; N-SOLITON SOLUTIONS; KDV EQUATION; DARBOUX TRANSFORMATIONS; SUPERPOSITION FORMULA; COMPLEXITON SOLUTIONS; KP EQUATION; SCATTERING; CONSTRUCTION; INTEGRATION;
D O I
10.7498/aps.60.110203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper deals with one type of sine-Gordon with self-consistent source (SGESCS). The explicit exact solution of the equation is investigated using a generalized binary Darboux transformation. The complexiton solution for the equation is finally obtained.
引用
收藏
页数:6
相关论文
共 33 条
[1]   DARBOUX TRANSFORMATION, POSITONS AND GENERAL SUPERPOSITION FORMULA FOR THE SINE-GORDON EQUATION [J].
ANDREEV, VA ;
BREZHNEV, YV .
PHYSICS LETTERS A, 1995, 207 (1-2) :58-66
[2]   POSITRON SOLUTIONS OF THE SINE-GORDON EQUATION [J].
BEUTLER, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (07) :3098-3109
[3]   NONLINEAR RESONANT SCATTERING AND PLASMA INSTABILITY - AN INTEGRABLE MODEL [J].
CLAUDE, C ;
LATIFI, A ;
LEON, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (12) :3321-3330
[4]   The multisoliton solutions of the KP equation with self-consistent sources [J].
Deng, SF ;
Chen, DY ;
Zhang, DJ .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 (09) :2184-2192
[5]   OPTICAL SOLITONS IN MEDIA WITH RESONANT AND NON-RESONANT SELF-FOCUSING NONLINEARITIES [J].
DOKTOROV, EV ;
VLASOV, RA .
OPTICA ACTA, 1983, 30 (02) :223-232
[6]  
He HS, 2005, CHINESE PHYS, V14, P1926, DOI 10.1088/1009-1963/14/10/002
[7]   New quasi-periodic waves of the (2+1)-dimensional sine-Gordon system [J].
Hu, HC ;
Lou, SY .
PHYSICS LETTERS A, 2005, 341 (5-6) :422-426
[8]   The higher-order KdV equation with a source and nonlinear superposition formula [J].
Hu, XB .
CHAOS SOLITONS & FRACTALS, 1996, 7 (02) :211-215
[9]   NONLINEAR SUPERPOSITION FORMULA OF THE KDV EQUATION WITH A SOURCE [J].
HU, XB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (23) :5489-5497
[10]   Construction of dKP and BKP equations with self-consistent sources [J].
Hu, Xing-Biao ;
Wang, Hong-Yan .
INVERSE PROBLEMS, 2006, 22 (05) :1903-1920