Performance of Five Metagenomic Classifiers for Virus Pathogen Detection Using Respiratory Samples from a Clinical Cohort

被引:7
作者
Carbo, Ellen C. [1 ]
Sidorov, Igor A. [1 ]
Van Rijn-Klink, Anneloes L. [1 ]
Pappas, Nikos [2 ,3 ]
van Boheemen, Sander [1 ,4 ]
Mei, Hailiang [2 ]
Hiemstra, Pieter S. [5 ]
Eagan, Tomas M. [6 ]
Claas, Eric C. J. [1 ]
Kroes, Aloys C. M. [1 ]
de Vries, Jutte J. C. [1 ]
机构
[1] Leiden Univ, Dept Med Microbiol, Med Ctr, NL-2333 ZA Leiden, Netherlands
[2] Leiden Univ, Dept Biomed Data Sci, Sequencing Anal Support Core, Med Ctr, NL-2333 ZA Leiden, Netherlands
[3] Univ Utrecht, Dept Biol, Sci Life, Theoret Biol & Bioinformat, NL-3584 CH Utrecht, Netherlands
[4] Erasmus MC, Dept Virosci, NL-3015 GD Rotterdam, Netherlands
[5] Leiden Univ, Dept Pulmonol, Med Ctr, NL-2333 ZA Leiden, Netherlands
[6] Haukeland Hosp, Dept Thorac Med, N-5021 Bergen, Norway
关键词
viral metagenomics; bioinformatics; pathogen detection; next-generation sequencing; ALIGNMENT; CLASSIFICATION; ENCEPHALITIS; DIAGNOSIS;
D O I
10.3390/pathogens11030340
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Viral metagenomics is increasingly applied in clinical diagnostic settings for detection of pathogenic viruses. While several benchmarking studies have been published on the use of metagenomic classifiers for abundance and diversity profiling of bacterial populations, studies on the comparative performance of the classifiers for virus pathogen detection are scarce. In this study, metagenomic data sets (n = 88) from a clinical cohort of patients with respiratory complaints were used for comparison of the performance of five taxonomic classifiers: Centrifuge, Clark, Kaiju, Kraken2, and Genome Detective. A total of 1144 positive and negative PCR results for a total of 13 respiratory viruses were used as gold standard. Sensitivity and specificity of these classifiers ranged from 83 to 100% and 90 to 99%, respectively, and was dependent on the classification level and data pre-processing. Exclusion of human reads generally resulted in increased specificity. Normalization of read counts for genome length resulted in a minor effect on overall performance, however it negatively affected the detection of targets with read counts around detection level. Correlation of sequence read counts with PCR Ct-values varied per classifier, data pre-processing (R-2 range 15.1-63.4%), and per virus, with outliers up to 3 log(10) reads magnitude beyond the predicted read count for viruses with high sequence diversity. In this benchmarking study, sensitivity and specificity were within the ranges of use for diagnostic practice when the cut-off for defining a positive result was considered per classifier.
引用
收藏
页数:14
相关论文
共 48 条
[1]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[2]   Contaminating viral sequences in high-throughput sequencing viromics: a linkage study of 700 sequencing libraries [J].
Asplund, M. ;
Kjartansdottir, K. R. ;
Mollerup, S. ;
Vinner, L. ;
Fridholm, H. ;
Herrera, J. A. R. ;
Friis-Nielsen, J. ;
Hansen, T. A. ;
Jensen, R. H. ;
Nielsen, I. B. ;
Richter, S. R. ;
Rey-Iglesia, A. ;
Matey-Hernandez, M. L. ;
Alquezar-Planas, D. E. ;
Olsen, P. V. S. ;
Sicheritz-Ponten, T. ;
Willerslev, E. ;
Lund, O. ;
Brunak, S. ;
Mourier, T. ;
Nielsen, L. P. ;
Izarzugaza, J. M. G. ;
Hansen, A. J. .
CLINICAL MICROBIOLOGY AND INFECTION, 2019, 25 (10) :1277-1285
[3]   SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing [J].
Bankevich, Anton ;
Nurk, Sergey ;
Antipov, Dmitry ;
Gurevich, Alexey A. ;
Dvorkin, Mikhail ;
Kulikov, Alexander S. ;
Lesin, Valery M. ;
Nikolenko, Sergey I. ;
Son Pham ;
Prjibelski, Andrey D. ;
Pyshkin, Alexey V. ;
Sirotkin, Alexander V. ;
Vyahhi, Nikolay ;
Tesler, Glenn ;
Alekseyev, Max A. ;
Pevzner, Pavel A. .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2012, 19 (05) :455-477
[4]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[5]   KrakenUniq: confident and fast metagenomics classification using unique k-mer counts [J].
Breitwieser, F. P. ;
Baker, D. N. ;
Salzberg, S. L. .
GENOME BIOLOGY, 2018, 19
[6]  
Brinkmann A, 2019, J CLIN MICROBIOL, V57, DOI [10.1128/JCM.00466-19, 10.1128/jcm.00466-19]
[7]   Encephalitis diagnosis using metagenomics: application of next generation sequencing for undiagnosed cases [J].
Brown, Julianne R. ;
Bharucha, Tehmina ;
Breuer, Judith .
JOURNAL OF INFECTION, 2018, 76 (03) :225-240
[8]   Fast and sensitive protein alignment using DIAMOND [J].
Buchfink, Benjamin ;
Xie, Chao ;
Huson, Daniel H. .
NATURE METHODS, 2015, 12 (01) :59-60
[9]  
Burrows M., 1994, Tech. Rep. 124
[10]   Viral metagenomic sequencing in the diagnosis of meningoencephalitis: a review of technical advances and diagnostic yield [J].
Carbo, Ellen C. ;
Blankenspoor, Ivar ;
Goeman, Jelle J. ;
Kroes, Aloys C. M. ;
Claas, Eric C. J. ;
De Vries, Jutte J. C. .
EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2021, 21 (11) :1139-1146