Towards hybrid superlattices in graphene

被引:141
作者
Sun, Zhengzong [1 ]
Pint, Cary L. [1 ]
Marcano, Daniela C. [1 ]
Zhang, Chenguang [1 ,2 ]
Yao, Jun [3 ]
Ruan, Gedeng [1 ]
Yan, Zheng [1 ]
Zhu, Yu [1 ]
Hauge, Robert H. [1 ,4 ]
Tour, James M. [1 ,4 ,5 ]
机构
[1] Rice Univ, Dept Chem, Houston, TX 77005 USA
[2] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300072, Peoples R China
[3] Dept Bioengn, Appl Phys Program, Houston, TX 77005 USA
[4] Richard E Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA
[5] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA
来源
NATURE COMMUNICATIONS | 2011年 / 2卷
基金
美国国家科学基金会;
关键词
CARBON NANOTUBES; LARGE-AREA; FILMS; FUNCTIONALIZATION; NANORIBBONS; MOLECULES; GRAPHANE; BANDGAP;
D O I
10.1038/ncomms1577
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The controllable and reversible modification of graphene by chemical functionalization can modulate its optical and electronic properties. Here we demonstrate the controlled patterning of graphane/graphene superlattices within a single sheet of graphene. By exchanging the sp(3) C-H bonds in graphane with sp(3) C-C bonds through functionalization, sophisticated multifunctional superlattices can be fabricated on both the macroscopic and microscopic scales. These patterns are visualized using fluorescence quenching microscopy techniques and confirmed using Raman spectroscopy. By tuning the extent of hydrogenation, the density of the sp(3) C functional groups on graphene's basal plane can be controlled from 0.4% to 3.5% with this two-step method. Using such a technique, which allows for both spatial and density control of the functional groups, a route to multifunctional electrical circuits and chemical sensors with specifically patterned recognition sites might be realized across a single graphene sheet, facilitating the development of graphene-based devices.
引用
收藏
页数:5
相关论文
共 27 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]  
Bai JW, 2010, NAT NANOTECHNOL, V5, P190, DOI [10.1038/NNANO.2010.8, 10.1038/nnano.2010.8]
[3]  
Balog R, 2010, NAT MATER, V9, P315, DOI [10.1038/nmat2710, 10.1038/NMAT2710]
[4]  
Boukhvalov DW, 2008, NANO LETT, V8, P4373, DOI [10.1021/nl802234n, 10.1021/nl802098g]
[5]   Enhancement of Chemical Activity in Corrugated Graphene [J].
Boukhvalov, Danil W. ;
Katsnelson, Mikhail I. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (32) :14176-14178
[6]   Giant thermoelectric effect in graphene [J].
Dragoman, D. ;
Dragoman, M. .
APPLIED PHYSICS LETTERS, 2007, 91 (20)
[7]   Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane [J].
Elias, D. C. ;
Nair, R. R. ;
Mohiuddin, T. M. G. ;
Morozov, S. V. ;
Blake, P. ;
Halsall, M. P. ;
Ferrari, A. C. ;
Boukhvalov, D. W. ;
Katsnelson, M. I. ;
Geim, A. K. ;
Novoselov, K. S. .
SCIENCE, 2009, 323 (5914) :610-613
[8]   Practical Chemical Sensors from Chemically Derived Graphene [J].
Fowler, Jesse D. ;
Allen, Matthew J. ;
Tung, Vincent C. ;
Yang, Yang ;
Kaner, Richard B. ;
Weiller, Bruce H. .
ACS NANO, 2009, 3 (02) :301-306
[9]   New approaches to nanofabrication: Molding, printing, and other techniques [J].
Gates, BD ;
Xu, QB ;
Stewart, M ;
Ryan, D ;
Willson, CG ;
Whitesides, GM .
CHEMICAL REVIEWS, 2005, 105 (04) :1171-1196
[10]   Narrow graphene nanoribbons from carbon nanotubes [J].
Jiao, Liying ;
Zhang, Li ;
Wang, Xinran ;
Diankov, Georgi ;
Dai, Hongjie .
NATURE, 2009, 458 (7240) :877-880