Material optimisation for AlGaN/GaN HFET applications

被引:29
|
作者
Bougrioua, Z
Moerman, I
Sharma, N
Wallis, RH
Cheyns, J
Jacobs, K
Thrush, EJ
Considine, L
Beanland, R
Farvacque, JL
Humphreys, C
机构
[1] State Univ Ghent, IMEC, INTEC, B-9000 Ghent, Belgium
[2] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England
[3] Marconi Caswell LTd, Towcester NN12 8EQ, Northants, England
[4] Thomas Swan Sci Equipment Ltd, Cambridge CB4 5UG, England
[5] Univ Sci & Tech Lille Flandres Artois, LSPES, F-59650 Villeneuve Dascq, France
关键词
metalorganic vapor phase epitaxy; two-dimensional electron gas; heterostructure field effect transistors;
D O I
10.1016/S0022-0248(01)01303-3
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
An optimisation of some growth parameters for the epitaxy of AlGaN-GaN based heterostructure field effect transistors (HFET) at low pressure in a new 3 * 2 " MOVPE reactor is presented. Some possible processes for the growth of semi-insulating buffers have been identified and are described. TEM analysis shows that the insulating character is not due to a high density of dislocations, whereas SIMS analysis shows that classical impurity (Si, O and C) concentrations are in the same range as in conductive undoped layers. Further studies are needed to identify the traps responsible for the compensation of the GaN layers. The properties of the two-dimensional electron gas (2DEG) located at the AlGaN-GaN interface can be tuned by modifying the characteristics of the AlGaN layer and of the insulating buffer. The best mobility (1500 cm(2) V-1 s(-1) for n similar to 6 x 10(12) cm(-2)) is obtained when using a thick buffer layer, whereas the sheet carrier density is found to increase with the Al content in. the undoped supply layer and reaches 1.1 x 10(13) cm(-2) for a composition of 24%. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:573 / 578
页数:6
相关论文
共 50 条
  • [1] AlGaN/GaN HFET Reliability
    Trew, Robert J.
    Green, Daniel S.
    Shealy, Jeffrey B.
    IEEE MICROWAVE MAGAZINE, 2009, 10 (04) : 116 - 127
  • [2] Trapping in AlGaN/GaN HFET
    National Key Laboratory of Monolithic Integrated Circuits and Modules, Nanjing Electronic Devices Institute, Nanjing 210016, China
    Guti Dianzixue Yanjiu Yu Jinzhan, 2007, 4 (457-463):
  • [3] MOCVD AlGaN/GaN HFET's material optimization and devices characterization
    Demchuk, A
    Olson, D
    Olson, D
    Shin, M
    Munns, G
    GAN AND RELATED ALLOYS - 2003, 2003, 798 : 95 - 100
  • [4] 凹栅AlGaN/GaN HFET
    张志国
    冯震
    杨梦丽
    冯志红
    默江辉
    蔡树军
    杨克武
    半导体学报, 2007, (09) : 1420 - 1423
  • [5] Optimized design of AlGaN/GaN HFET
    National Key Laboratory of Monolithic Integrated Circuits and Modules, Nanjing Electronic Devices Institute, Nanjing 210016, China
    Guti Dianzixue Yanjiu Yu Jinzhan/Research and Progress of Solid State Electronics, 2007, 27 (02): : 163 - 169
  • [6] Static and Dynamic Responses of GaN Piezoresistive Microcantilever with Embedded AlGaN/GaN HFET for Sensing Applications
    Talukdar, Abdul
    Qazi, Muhammad
    Koley, Goutam
    2013 IEEE SENSORS, 2013, : 1058 - 1061
  • [7] AlGaN/GaN HFET中的陷阱
    薛舫时
    固体电子学研究与进展, 2007, (04) : 457 - 463
  • [8] AlGaN/GaN HFET amplifier performance and limitations
    Trew, RJ
    2002 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-3, 2002, : 1811 - 1814
  • [9] Recess-gate AlGaN/GaN HFET
    Zhang, Zhiguo
    Feng, Zhen
    Yang, Mengli
    Feng, Zhihong
    Mo, Jianghui
    Cai, Shujun
    Yang, Kewu
    Pan Tao Ti Hsueh Pao/Chinese Journal of Semiconductors, 2007, 28 (09): : 1420 - 1423
  • [10] A Compact Physical AlGaN/GaN HFET Model
    Hou, Danqiong
    Bilbro, Griff L.
    Trew, Robert J.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2013, 60 (02) : 639 - 645