The minimum density of an identifying code in the king lattice

被引:37
作者
Charon, I
Honkala, I
Hudry, O
Lobstein, A
机构
[1] CNRS, F-75634 Paris 13, France
[2] ENST, F-75634 Paris 13, France
[3] Univ Turku, Dept Math, Turku 20014, Finland
关键词
graph theory; identifying codes;
D O I
10.1016/S0012-365X(03)00306-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a connected undirected graph G =(V, E) and a subset of vertices C. If for all vertices v is an element of V, the sets B-r(v) boolean AND C are all nonempty and different, where B-r(v) denotes the set of all points within distance r from v, then we call C an r-identifying code. For all r, we give the exact value of the best possible density of an r-identifying code in the king lattice, i.e., the infinite two-dimensional square lattice with two diagonals. (C) 2003 Published by Elsevier B.V.
引用
收藏
页码:95 / 109
页数:15
相关论文
共 14 条
[1]  
Blass U, 2000, J COMB DES, V8, P151, DOI 10.1002/(SICI)1520-6610(2000)8:2<151::AID-JCD8>3.0.CO
[2]  
2-S
[3]   Bounds on identifying codes [J].
Blass, U ;
Honkala, I ;
Litsyn, S .
DISCRETE MATHEMATICS, 2001, 241 (1-3) :119-128
[4]  
Charon I., 2001, ELECTRON J COMB, V8, pR39
[5]  
Charon I, 2002, ELECTRON J COMB, V9
[6]  
Cohen G., 1999, ELECTRON J COMB, V6, pR19
[7]  
Cohen G., 1999, ASPECTS ALGORITHMIQU, P19
[8]  
Cohen G. D., 2001, Codes and Association Scheme. DIMACS Workshop. (Series in Discrete Mathematics and Theoretical Computer Science Vol.56), P97
[9]   Bounds for codes identifying vertices in the hexagonal grid [J].
Cohen, GD ;
Honkala, I ;
Lobstein, A ;
Zémor, G .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2000, 13 (04) :492-504
[10]   On codes identifying vertices in the two-dimensional square lattice with diagonals [J].
Cohen, GD ;
Honkala, I ;
Lobstein, A ;
Zémor, G .
IEEE TRANSACTIONS ON COMPUTERS, 2001, 50 (02) :174-176