The Role of Machine Learning in Cardiovascular Pathology

被引:10
作者
Glass, Carolyn [1 ,2 ]
Lafata, Kyle J. [3 ,4 ,5 ]
Jeck, William [1 ,2 ]
Horstmeyer, Roarke [1 ,6 ]
Cooke, Colin [5 ]
Everitt, Jeffrey [1 ,2 ]
Glass, Matthew [1 ,7 ]
Dov, David [1 ,8 ]
Seidman, Michael A. [9 ,10 ]
机构
[1] Duke Univ, Duke AI Hlth, Div Artificial Intelligence & Computat Pathol, Med Ctr, Durham, NC 27710 USA
[2] Duke Univ, Dept Pathol, Med Ctr, 217AM Davison Bldg,Box 3712,40 Duke Med Circle, Durham, NC 27710 USA
[3] Duke Univ, Dept Radiol, Med Ctr, Durham, NC 27710 USA
[4] Duke Univ, Dept Radiat Oncol, Sch Med, Durham, NC 27710 USA
[5] Duke Univ, Duke Pratt Sch Engn, Dept Elect & Comp Engn, Durham, NC 27710 USA
[6] Duke Pratt Sch Engn, Dept Biomed Engn, Durham, NC USA
[7] Duke Univ, Dept Anesthesiol, Med Ctr, Durham, NC 27710 USA
[8] Tel Aviv Sourasky Med Ctr, Tel Aviv, Israel
[9] Univ Hlth Network, Lab Med Program, Toronto, ON, Canada
[10] Univ Toronto, Dept Lab Med & Pathobiol, Toronto, ON, Canada
关键词
RODENT PROGRESSIVE CARDIOMYOPATHY; ARTIFICIAL-INTELLIGENCE; SCIENTIFIC STATEMENT; DIAGNOSTIC-APPROACH; FLAT-PANEL; HEART; REJECTION; IMAGES; STANDARDIZATION; MANAGEMENT;
D O I
10.1016/j.cjca.2021.11.008
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Machine learning has seen slow but steady uptake in diagnostic pathology over the past decade to assess digital whole-slide images. Machine learning tools have incredible potential to standardise, and likely even improve, histopathologic diagnoses, but they are not yet widely used in clinical practice. We describe the principles of these tools and technologies and some successful preclinical and pre-translational efforts in cardiovascular pathology, as well as a roadmap for moving forward. In nonhuman animal models, one proof-of-principle application is in rodent progressive cardiomyopathy, which is of particular significance to drug toxicity studies. Basic science successes include screening the quality of differentiated stem cells and characterising cardiomyocyte developmental stages, with potential applications for research and toxicology/drug safety screening using derived or native human pluripotent stem cells differentiated into cardiomyocytes. Translational studies of particular note include those with success in diagnosing the various forms of heart allograft rejection. For fully realising the value of these tools in clinical cardiovascular pathology, we identify 3 essential challenges. First is image quality standardisation to ensure that algorithms can be developed and implemented on robust, consistent data. The second is consensus diagnosis; experts don't always agree, and thus "truth" may be difficult to establish, but the algorithms themselves may provide a solution. The third is the need for large-enough data sets to facilitate robust algorithm development, necessitating large cross-institutional shared image databases. The power of histopathology-based machine learning technologies is tremendous, and we outline the next steps needed to capitalise on this power.
引用
收藏
页码:234 / 245
页数:12
相关论文
共 66 条
[1]   MALDI Imaging mass spectrometry: current frontiers and perspectives in pathology research and practice [J].
Aichler, Michaela ;
Walch, Axel .
LABORATORY INVESTIGATION, 2015, 95 (04) :422-431
[2]  
Ali Sahirzeeshan, 2013, Med Image Comput Comput Assist Interv, V16, P412
[3]   A REAL-TIME, FLAT-PANEL, AMORPHOUS-SILICON, DIGITAL X-RAY IMAGER [J].
ANTONUK, LE ;
YORKSTON, J ;
HUANG, WD ;
SIEWERDSEN, JH ;
BOUDRY, JM ;
ELMOHRI, Y ;
MARX, MV .
RADIOGRAPHICS, 1995, 15 (04) :993-1000
[4]  
Association for Molecular Pathology Clinical Practice Committee, 2009, MOL DIAGN ASS VAL
[5]   Digital pathology and computational image analysis in nephropathology [J].
Barisoni, Laura ;
Lafata, Kyle J. ;
Hewitt, Stephen M. ;
Madabhushi, Anant ;
Balis, Ulysses G. J. .
NATURE REVIEWS NEPHROLOGY, 2020, 16 (11) :669-685
[6]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[7]   Integrated and translational nonclinical in vivo cardiovascular risk assessment: Gaps and opportunities [J].
Berridge, Brian R. ;
Hoffmann, Peter ;
Turk, James R. ;
Sellke, Frank ;
Gintant, Gary ;
Hirkaler, Gerald ;
Dreher, Kevin ;
Schultze, A. Eric ;
Walker, Dana ;
Edmunds, Nick ;
Halpern, Wendy ;
Falls, James ;
Sanders, Marty ;
Pettit, Syril D. .
REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2013, 65 (01) :38-46
[8]   Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by pathologists [J].
Bulten, Wouter ;
Balkenhol, Maschenka ;
Belinga, Jean-Joel Awoumou ;
Brilhante, Americo ;
Cakir, Asli ;
Egevad, Lars ;
Eklund, Martin ;
Farre, Xavier ;
Geronatsiou, Katerina ;
Molinie, Vincent ;
Pereira, Guilherme ;
Roy, Paromita ;
Saile, Gunter ;
Salles, Paulo ;
Schaafsma, Ewout ;
Tschui, Joelle ;
Vos, Anne-Marie ;
van Boven, Hester ;
Vink, Robert ;
van der Laak, Jeroen ;
Hulsbergen-van der Kaa, Christina ;
Litjens, Geert .
MODERN PATHOLOGY, 2021, 34 (03) :660-671
[9]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[10]  
CareDx, PROD PIP INN IS COM