Thermoelectric transport properties in 3D Dirac semimetal Cd3As2

被引:15
|
作者
Amarnath, R. [1 ]
Bhargavi, K. S. [1 ]
Kubakaddi, S. S. [2 ]
机构
[1] Siddaganga Inst Technol, Dept Phys, Tumakuru 572103, Karnataka, India
[2] KLE Technol Univ, Dept Phys, Hubballi 580031, Karnataka, India
关键词
electron-phonon interaction; charged impurity scattering; Ritz iteration; 3DDS Cd3As2; electronic thermal conductivity; thermopower; ELECTRICAL-RESISTIVITY; THERMAL-CONDUCTIVITY; DIELECTRIC-CONSTANT; MOBILITY;
D O I
10.1088/1361-648X/ab720f
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Thermoelectric transport properties, namely, electrical conductivity, electronic thermal conductivity, and diffusion thermopower are theoretically investigated in 3D Dirac semimetal Cd3As2. We employ Boltzmann transport formalism and consider the electron scattering by charged impurities, short-range disorder, acoustic phonons, and optical phonons. The Boltzmann transport equation is solved using the Ritz iteration technique to obtain the first-order perturbation distribution function for the interaction of electrons with inelastic polar optical phonons scattering. The numerical results are presented in the temperature range 2-300 K with the electron concentration in the range (0.1-10) x 10(18) cm(-3). It is found that, at low temperature < similar to 70 K transport coefficients are dominated by charged impurity scattering and at higher temperature the phonon scattering is found to be dominant. The validity of Wiedemann-Franz law is examined. Recently observed experimental results are explained by our theory.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Enhanced thermoelectric properties of the Dirac semimetal Cd3As2
    Zhou, Tong
    Zhang, Cheng
    Zhang, Huisheng
    Xiu, Faxian
    Yang, Zhongqin
    INORGANIC CHEMISTRY FRONTIERS, 2016, 3 (12): : 1637 - 1643
  • [2] 3D Dirac semimetal Cd3As2: A review of material properties
    Crassee, I.
    Sankar, R.
    Lee, W. -L.
    Akrap, A.
    Orlita, M.
    PHYSICAL REVIEW MATERIALS, 2018, 2 (12):
  • [3] Population Inversion and Dirac Fermion Cooling in 3D Dirac Semimetal Cd3As2
    Bao, Changhua
    Li, Qian
    Xu, Sheng
    Zhou, Shaohua
    Zeng, Xiang-Yu
    Zhong, Haoyuan
    Gao, Qixuan
    Luo, Laipeng
    Sun, Dong
    Xia, Tian-Long
    Zhou, Shuyun
    NANO LETTERS, 2022, 22 (03) : 1138 - 1144
  • [4] Dirac Semimetal Heterostructures: 3D Cd3As2 on 2D Graphene
    Wu, Yan-Fei
    Zhang, Liang
    Li, Cai-Zhen
    Zhang, Zhen-Sheng
    Liu, Song
    Liao, Zhi-Min
    Yu, Dapeng
    ADVANCED MATERIALS, 2018, 30 (34)
  • [5] Unconventional superconductivity at mesoscopic point contacts on the 3D Dirac semimetal Cd3As2
    Aggarwal L.
    Gaurav A.
    Thakur G.S.
    Haque Z.
    Ganguli A.K.
    Sheet G.
    Nature Materials, 2016, 15 (1) : 32 - 37
  • [6] Highly efficient terahertz generation using 3D Dirac semimetal Cd3As2
    Wang, Lu
    Lim, Jeremy
    Wong, Liang Jie
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [7] Unconventional superconductivity at mesoscopic point contacts on the 3D Dirac semimetal Cd3As2
    Aggarwal, Leena
    Gaurav, Abhishek
    Thakur, Gohil S.
    Haque, Zeba
    Ganguli, Ashok K.
    Sheet, Goutam
    NATURE MATERIALS, 2016, 15 (01) : 32 - +
  • [8] Non-trivial Berry phase in the Cd3As2 3D Dirac semimetal
    Desrat, W.
    Consejo, C.
    Teppe, F.
    Contreras, S.
    Marcinkiewicz, M.
    Knap, W.
    Nateprov, A.
    Arushanov, E.
    19TH INTERNATIONAL CONFERENCE ON ELECTRON DYNAMICS IN SEMICONDUCTORS, OPTOELECTRONICS AND NANOSTRUCTURES (EDISON' 19), 2015, 647
  • [9] Thermoelectric Properties of a Ferromagnetic Semiconductor Based on a Dirac Semimetal (Cd3As2) under High Pressure
    Melnikova, N. V.
    Tebenkov, A. V.
    Sukhanova, G. V.
    Babushkin, A. N.
    Saipulaeva, L. A.
    Zakhvalinskii, V. S.
    Gabibov, S. F.
    Alibekov, A. G.
    Mollaev, A. Yu.
    PHYSICS OF THE SOLID STATE, 2018, 60 (03) : 494 - 498
  • [10] Thermoelectric Properties of a Ferromagnetic Semiconductor Based on a Dirac Semimetal (Cd3As2) under High Pressure
    N. V. Melnikova
    A. V. Tebenkov
    G. V. Sukhanova
    A. N. Babushkin
    L. A. Saipulaeva
    V. S. Zakhvalinskii
    S. F. Gabibov
    A. G. Alibekov
    A. Yu. Mollaev
    Physics of the Solid State, 2018, 60 : 494 - 498