On the true and the modified Cramer-Rao bounds for the estimation of a scalar parameter in the presence of nuisance parameters

被引:112
作者
Moeneclaey, M [1 ]
机构
[1] State Univ Ghent, Commun Engn Lab, B-9000 Ghent, Belgium
关键词
communication system performance; parameter estimation; synchronization;
D O I
10.1109/26.729398
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this contribution we consider the Cramer-Rao bound (CRB) for the estimation of a scalar parameter in the presence of nuisance parameters, Whereas this true CRB is hard to evaluate in general, we present a simple analytical expression for its high SNR asymptote, i.e., the asymptotic CRB (ACRB), We show that this ACRE is related to the CRB for the joint estimation of the scalar parameter and the nuisance parameters. Recently, a modified CRB (MCRB) for the estimation of a scalar parameter in the presence of nuisance parameters has been derived, This MCRB is also simple to evaluate and is related to the CRB for the estimation of the scalar parameter assuming that the value of the nuisance parameters is a priori known. We show that the MCRB can be quite loose at high SNR, when the scalar parameter is coupled with the nuisance parameters. In the case of synchronization parameter estimation, me find that the ACRE equals the MCRB, whether or not (some of) the nuisance parameters are a priori known.
引用
收藏
页码:1536 / 1544
页数:9
相关论文
共 9 条
[1]   Phase and frequency estimation for PSK packets: Bounds and algorithms [J].
Cowley, WG .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1996, 44 (01) :26-28
[2]   THE MODIFIED CRAMER-RAO BOUND AND ITS APPLICATION TO SYNCHRONIZATION PROBLEMS [J].
DANDREA, AN ;
MENGALI, U ;
REGGIANNINI, R .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1994, 42 (2-4) :1391-1399
[4]  
Kay S. M., 1998, Fundamentals of Statistical Signal Processing, Volume 1:Estimation Theory, V1
[5]  
Lindsey W. C., 1973, Telecommunication Systems Engineering
[8]  
MOENECLAEY M, 1986, P IEEE INT COMM C 86, P987
[9]  
van Trees H. L., 2002, Detection, estimation, and modulation theory, part I: detection, estimation, and linear modulation theory