VARIABLE-ORDER FRACTIONAL CREEP MODEL OF MUDSTONE UNDER HIGH-TEMPERATURE

被引:7
|
作者
Li, Ming [1 ]
Pu, Hai [1 ,2 ]
Cao, Lili [1 ]
机构
[1] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Xuzhou, Peoples R China
[2] China Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou, Peoples R China
来源
THERMAL SCIENCE | 2017年 / 21卷
关键词
high temperature; variable-order; creep model; mudstone; VISCOELASTICITY; DIFFUSION; MECHANICS; OPERATORS; CALCULUS;
D O I
10.2298/TSCI17S1343L
中图分类号
O414.1 [热力学];
学科分类号
摘要
In order to study the properties of high-temperature creep for mudstone, MTS810 electro-hydraulic servo material test system and MTS652.02 high temperature furnace are utilized for the creep test of mudstone at 700 degrees C. Considering the visco-elastic-plastic characteristics and the damage effect, the variable-order fractional creep model is established to research the creep character, and it is found that the proposed model can be well fitting of our experimental results. Especially, variable-order function can be used to analyze and study the viscoelastic property evolution of mudstone in process of high-temperature creep. Compositions of mud stone are distinguished by X-ray diffraction technology. The presence of the illite under high temperatures can be used for explaining the viscous feature prevails over the elastic ones in viscoelastic properties.
引用
收藏
页码:S343 / S349
页数:7
相关论文
共 50 条
  • [41] A Meshless Method for the Variable-Order Time Fractional Telegraph Equation
    Gharian, D.
    Ghaini, F. M. Maalek
    Heydari, M. H.
    JOURNAL OF MATHEMATICAL EXTENSION, 2019, 13 (03) : 35 - 56
  • [42] New Recursive Approximations for Variable-Order Fractional Operators with Applications
    Zaky, Mahmoud A.
    Doha, Eid H.
    Taha, Taha M.
    Baleanu, Dumitru
    MATHEMATICAL MODELLING AND ANALYSIS, 2018, 23 (02) : 227 - 239
  • [43] Variable-order fractional differential operators in anomalous diffusion modeling
    Sun, HongGuang
    Chen, Wen
    Chen, YangQuan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (21) : 4586 - 4592
  • [44] On the dynamical investigation and synchronization of variable-order fractional neural networks: the Hopfield-like neural network model
    Jahanshahi, Hadi
    Zambrano-Serrano, Ernesto
    Bekiros, Stelios
    Wei, Zhouchao
    Volos, Christos
    Castillo, Oscar
    Aly, Ayman A.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (10) : 1757 - 1769
  • [45] Wellposedness and regularity of a nonlinear variable-order fractional wave equation
    Zheng, Xiangcheng
    Wang, Hong
    APPLIED MATHEMATICS LETTERS, 2019, 95 : 29 - 35
  • [46] A viscoelastic-viscoplastic mechanical model of time-dependent materials based on variable-order fractional derivative
    Zhou, Feng-xi
    Wang, Li-ye
    Liu, Zhi-yi
    Zhao, Wen-cang
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2022, 26 (03) : 699 - 717
  • [47] An ε-Approximate Approach for Solving Variable-Order Fractional Differential Equations
    Wang, Yahong
    Wang, Wenmin
    Mei, Liangcai
    Lin, Yingzhen
    Sun, Hongbo
    FRACTAL AND FRACTIONAL, 2023, 7 (01)
  • [48] Finite Element Discretizations for Variable-Order Fractional Diffusion Problems
    Wenyu Lei
    George Turkiyyah
    Omar Knio
    Journal of Scientific Computing, 2023, 97
  • [49] Analysis of a nonlinear variable-order fractional stochastic differential equation
    Zheng, Xiangcheng
    Zhang, Zhongqiang
    Wang, Hong
    APPLIED MATHEMATICS LETTERS, 2020, 107 (107)
  • [50] An approximate approach for the generalized variable-order fractional pantograph equation
    Avazzadeh, Z.
    Heydari, M. H.
    Mahmoudi, Mohammad Reza
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (04) : 2347 - 2354