VARIABLE-ORDER FRACTIONAL CREEP MODEL OF MUDSTONE UNDER HIGH-TEMPERATURE

被引:7
|
作者
Li, Ming [1 ]
Pu, Hai [1 ,2 ]
Cao, Lili [1 ]
机构
[1] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Xuzhou, Peoples R China
[2] China Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou, Peoples R China
来源
THERMAL SCIENCE | 2017年 / 21卷
关键词
high temperature; variable-order; creep model; mudstone; VISCOELASTICITY; DIFFUSION; MECHANICS; OPERATORS; CALCULUS;
D O I
10.2298/TSCI17S1343L
中图分类号
O414.1 [热力学];
学科分类号
摘要
In order to study the properties of high-temperature creep for mudstone, MTS810 electro-hydraulic servo material test system and MTS652.02 high temperature furnace are utilized for the creep test of mudstone at 700 degrees C. Considering the visco-elastic-plastic characteristics and the damage effect, the variable-order fractional creep model is established to research the creep character, and it is found that the proposed model can be well fitting of our experimental results. Especially, variable-order function can be used to analyze and study the viscoelastic property evolution of mudstone in process of high-temperature creep. Compositions of mud stone are distinguished by X-ray diffraction technology. The presence of the illite under high temperatures can be used for explaining the viscous feature prevails over the elastic ones in viscoelastic properties.
引用
收藏
页码:S343 / S349
页数:7
相关论文
共 50 条
  • [31] On a New Definition of Fractional Variable-Order Derivative
    Sierociuk, Dominik
    Malesza, Wiktor
    Macias, Michal
    PROCEEDINGS OF THE 2013 14TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2013, : 340 - 345
  • [32] Viscoelastic study of cement and emulsified asphalt mortar under temperature variations based on a novel variable-order fractional Maxwell model
    Su, Xianglong
    Chen, Yunqing
    Li, Jipeng
    Wu, Bing
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 451
  • [33] Image denoising by a novel variable-order total fractional variation model
    Kazemi Golbaghi, Fariba
    Eslahchi, M. R.
    Rezghi, Mansoor
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (08) : 7250 - 7261
  • [34] Optimal control of variable-order fractional model for delay cancer treatments
    Sweilam, N. H.
    AL-Mekhlafi, S. M.
    Albalawi, A. O.
    Machado, J. A. Tenreiro
    APPLIED MATHEMATICAL MODELLING, 2021, 89 : 1557 - 1574
  • [35] Numerical simulations for fractional variable-order equations
    Mozyrska, Dorota
    Oziablo, Piotr
    IFAC PAPERSONLINE, 2018, 51 (04): : 853 - 858
  • [36] Variable-order fuzzy fractional PID controller
    Liu, Lu
    Pan, Feng
    Xue, Dingyu
    ISA TRANSACTIONS, 2015, 55 : 227 - 233
  • [37] Variable-order fractional derivatives and their numerical approximations
    Valerio, Duarte
    da Costa, Jose Sa
    SIGNAL PROCESSING, 2011, 91 (03) : 470 - 483
  • [38] A variable-order fractional differential equation model of shape memory polymers
    Li, Zheng
    Wang, Hong
    Xiao, Rui
    Yang, Su
    CHAOS SOLITONS & FRACTALS, 2017, 102 : 473 - 485
  • [39] New perspective on the creep characteristic of fiber-dependent shape memory polymers: variable-order fractional constitutive model
    Shiru, Guo
    Hai, Pu
    Mengsen, Yang
    Ziheng, Sha
    Dejun, Liu
    Jinyong, Xie
    Yiying, Feng
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 24 : 5177 - 5185
  • [40] Legendre wavelet method for solving variable-order nonlinear fractional optimal control problems with variable-order fractional Bolza cost
    Kumar, Nitin
    Mehra, Mani
    ASIAN JOURNAL OF CONTROL, 2023, 25 (03) : 2122 - 2138