VARIABLE-ORDER FRACTIONAL CREEP MODEL OF MUDSTONE UNDER HIGH-TEMPERATURE

被引:7
|
作者
Li, Ming [1 ]
Pu, Hai [1 ,2 ]
Cao, Lili [1 ]
机构
[1] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Xuzhou, Peoples R China
[2] China Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou, Peoples R China
来源
THERMAL SCIENCE | 2017年 / 21卷
关键词
high temperature; variable-order; creep model; mudstone; VISCOELASTICITY; DIFFUSION; MECHANICS; OPERATORS; CALCULUS;
D O I
10.2298/TSCI17S1343L
中图分类号
O414.1 [热力学];
学科分类号
摘要
In order to study the properties of high-temperature creep for mudstone, MTS810 electro-hydraulic servo material test system and MTS652.02 high temperature furnace are utilized for the creep test of mudstone at 700 degrees C. Considering the visco-elastic-plastic characteristics and the damage effect, the variable-order fractional creep model is established to research the creep character, and it is found that the proposed model can be well fitting of our experimental results. Especially, variable-order function can be used to analyze and study the viscoelastic property evolution of mudstone in process of high-temperature creep. Compositions of mud stone are distinguished by X-ray diffraction technology. The presence of the illite under high temperatures can be used for explaining the viscous feature prevails over the elastic ones in viscoelastic properties.
引用
收藏
页码:S343 / S349
页数:7
相关论文
共 50 条
  • [21] Study of fractional variable-order lymphatic filariasis infection model
    Jeelani, Mdi Begum
    Alhamzi, Ghaliah
    Zada, Mian Bahadur
    Hassan, Muhammad
    OPEN PHYSICS, 2024, 22 (01):
  • [22] Variable-order space-fractional diffusion equations and a variable-order modification of constant-order fractional problems
    Zheng, Xiangcheng
    Wang, Hong
    APPLICABLE ANALYSIS, 2022, 101 (06) : 1848 - 1870
  • [23] A variable-order fractional discrete grey model and its application
    Huang Meixin
    Liu Caixia
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (02) : 3509 - 3522
  • [24] Variable-Order Fractional Scale Calculus
    Valerio, Duarte
    Ortigueira, Manuel D.
    MATHEMATICS, 2023, 11 (21)
  • [25] Analysis of a subdiffusion model with a variable-order fractional calibration term
    Zheng, Xiangcheng
    APPLIED MATHEMATICS LETTERS, 2023, 142
  • [26] On variable-order fractional linear viscoelasticity
    Giusti, Andrea
    Colombaro, Ivano
    Garra, Roberto
    Garrappa, Roberto
    Mentrelli, Andrea
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (04) : 1564 - 1578
  • [27] Fractional-order Chelyshkov wavelet method for solving variable-order fractional differential equations and an application in variable-order fractional relaxation system
    Hoa T. B. Ngo
    Mohsen Razzaghi
    Thieu N. Vo
    Numerical Algorithms, 2023, 92 : 1571 - 1588
  • [28] Fractional-order Chelyshkov wavelet method for solving variable-order fractional differential equations and an application in variable-order fractional relaxation system
    Ngo, Hoa T. B.
    Razzaghi, Mohsen
    Vo, Thieu N.
    NUMERICAL ALGORITHMS, 2023, 92 (03) : 1571 - 1588
  • [29] SM-Algorithms for Approximating the Variable-Order Fractional Derivative of High Order
    Moghaddam, B. P.
    Machado, J. A. T.
    FUNDAMENTA INFORMATICAE, 2017, 151 (1-4) : 293 - 311
  • [30] A Variable-Order Dynamic Constitutive Model for Clay Based on the Fractional Calculus
    Zhang, Bo-Lang
    Chen, Kai-Sheng
    Hu, Xing
    Zhang, Kun
    APPLIED SCIENCES-BASEL, 2022, 12 (13):