VARIABLE-ORDER FRACTIONAL CREEP MODEL OF MUDSTONE UNDER HIGH-TEMPERATURE

被引:7
|
作者
Li, Ming [1 ]
Pu, Hai [1 ,2 ]
Cao, Lili [1 ]
机构
[1] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Xuzhou, Peoples R China
[2] China Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou, Peoples R China
来源
THERMAL SCIENCE | 2017年 / 21卷
关键词
high temperature; variable-order; creep model; mudstone; VISCOELASTICITY; DIFFUSION; MECHANICS; OPERATORS; CALCULUS;
D O I
10.2298/TSCI17S1343L
中图分类号
O414.1 [热力学];
学科分类号
摘要
In order to study the properties of high-temperature creep for mudstone, MTS810 electro-hydraulic servo material test system and MTS652.02 high temperature furnace are utilized for the creep test of mudstone at 700 degrees C. Considering the visco-elastic-plastic characteristics and the damage effect, the variable-order fractional creep model is established to research the creep character, and it is found that the proposed model can be well fitting of our experimental results. Especially, variable-order function can be used to analyze and study the viscoelastic property evolution of mudstone in process of high-temperature creep. Compositions of mud stone are distinguished by X-ray diffraction technology. The presence of the illite under high temperatures can be used for explaining the viscous feature prevails over the elastic ones in viscoelastic properties.
引用
收藏
页码:S343 / S349
页数:7
相关论文
共 50 条
  • [21] A computational wavelet method for variable-order fractional model of dual phase lag bioheat equation
    Hosseininia, M.
    Heydari, M. H.
    Roohi, R.
    Avazzadeh, Z.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 395 : 1 - 18
  • [23] On an accurate discretization of a variable-order fractional reaction-diffusion equation
    Hajipour, Mojtaba
    Jajarmi, Amin
    Baleanu, Dumitru
    Sun, HongGuang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 69 : 119 - 133
  • [24] Variable-Order Fractional Equivalent Circuit Model for Lithium-ion Batteries
    Zhang, Qi
    Shang, Yun-long
    Li, Yan
    Duan, Bin
    Zhang, Cheng-hui
    PROCEEDINGS OF THE 2016 IEEE 11TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2016, : 2277 - 2282
  • [25] Synchronization between a Class of Variable-Order Fractional Hyperjerk Chaotic Systems
    Perez-Diaz, Juan Jose
    Zambrano-Serrano, Ernesto
    Loya-Cabrera, Alejandro Eutimio
    Cervantes-Garcia, Oscar Eduardo
    Rodriguez-Cruz, Jose Ramon
    Platas-Garza, Miguel Angel
    Posadas-Castillo, Cornelio
    COMPUTACION Y SISTEMAS, 2023, 27 (02): : 345 - 355
  • [26] Analysis of the variable-order fractional viscoelastic modeling with application to polymer materials
    Han, Baozhi
    Yin, Deshun
    Gao, Yunfei
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2023, 34 (08) : 2707 - 2720
  • [27] On multistep tumor growth models of fractional variable-order
    Valentim, Carlos A.
    Rabi, Jose A.
    David, Sergio A.
    Tenreiro Machado, Jose A.
    BIOSYSTEMS, 2021, 199
  • [28] A novel approach to nonlinear variable-order fractional viscoelasticity
    Di Paola, M.
    Alotta, G.
    Burlon, A.
    Failla, G.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2172):
  • [29] Analysis and discretization of a variable-order fractional wave equation
    Zheng, Xiangcheng
    Wang, Hong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 104
  • [30] Numerical Solutions of a Variable-Order Fractional Financial System
    Ma, Shichang
    Xu, Yufeng
    Yue, Wei
    JOURNAL OF APPLIED MATHEMATICS, 2012,