Reconstruction of a variety from the derived category and groups of autoequivalences

被引:163
作者
Bondal, A [1 ]
Orlov, D
机构
[1] Russian Acad Sci, VA Steklov Math Inst, Moscow, Russia
[2] Univ Warwick, Coventry CV4 7AL, W Midlands, England
[3] Max Planck Inst Math, D-5300 Bonn, Germany
关键词
derived categories; coherent sheaves; autoequivalences; Serre functor;
D O I
10.1023/A:1002470302976
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider smooth algebraic varieties with ample either canonical or anticanonical sheaf. We prove that such a variety is uniquely determined by its derived category of coherent sheaves. We also calculate the group of exact autoequivalences for these categories. The technics of ample sequences in Abelian categories is used.
引用
收藏
页码:327 / 344
页数:18
相关论文
共 13 条
[1]  
[Anonymous], 1982, ASTERISQUE
[2]  
Bondal A., ALGGEOM9506012
[3]  
Bondal AI., 1989, MATH USSR IZV, V53, P1183, DOI [DOI 10.1070/IM1990v035n03ABEH000716, 10.1070/IM1990v035n03ABEH000716, DOI 10.1070/IM1990V035N03ABEH000716]
[4]  
BONDAL AI, 1995, 9515 MPI
[5]   COHOMOLOGY THEORIES [J].
BROWN, EH .
ANNALS OF MATHEMATICS, 1962, 75 (03) :467-&
[6]  
GROTHENDIECK A, 1959, SEMINAIRE BOURBAKI 1
[7]  
ILLUSIE L., 1971, LECT NOTES MATH, V225
[8]   DUALITY BETWEEN D(X) AND D(X) WITH ITS APPLICATION TO PICARD SHEAVES [J].
MUKAI, S .
NAGOYA MATHEMATICAL JOURNAL, 1981, 81 (MAR) :153-175
[9]   Equivalences of derived categories and K3 surfaces [J].
Orlov D.O. .
Journal of Mathematical Sciences, 1997, 84 (5) :1361-1381
[10]  
Polishchuk A, 1996, MATH RES LETT, V3, P813