Facile synthesis of carbon nanofibers/MnO2 nanosheets as high-performance electrodes for asymmetric supercapacitors

被引:112
|
作者
Ning, Peigong [1 ]
Duan, Xiaochuan [1 ]
Ju, Xiaokang [1 ]
Lin, Xiaoping [1 ]
Tong, Xiaobin [1 ]
Pan, Xi [1 ]
Wang, Taihong [1 ]
Li, Qiuhong [1 ]
机构
[1] Xiamen Univ, Pen Tung Sah Inst Micronano Sci & Technol, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
MnO2; Carbon nanofibers; Electrospinning; Asymmetric supercapacitor; HIGH-SURFACE-AREA; MNO2; COMPOSITES; ENERGY; NANOTUBES; HYDROGEL; OXIDES; POWER;
D O I
10.1016/j.electacta.2016.05.214
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We reported the facile synthesis of hollow carbon nanofibers/MnO2 (CNFs/MnO2) composites for high performance supercapacitor electrodes. The nanocomposites were prepared via electrospinning of carbon nanofibers/MnOx and subsequent hydrothermal coating of MnO2 nanosheets on the surface. The unique hollow structure and numerous MnO2 nanosheets increased the contact area between the electrodes and electrolyte so that the CNFs/MnO2 electrode exhibited higher electrochemical performance than the CNFs/MnOx composites. The CNFs/MnO2 composites displayed a specific capacitance of 151.1 F/g at 1 A/g, and 90% of the ini!--!>tial specific capacitance was maintained after 8000 cycles. An asymmetric supercapacitor was assembled with the CNFs/MnO2 composites and the active carbon. The asymmetric supercapacitor exhibited a high performance in 1 M Na2SO4 aqueous solution with a working potential window ranging from 0 to 1.8 V. Furthermore, the asymmetric supercapacitor possessed a cycling stability with 93.5% capacitance retained after 1500 cycles at 1 A/g. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:754 / 761
页数:8
相关论文
共 50 条
  • [31] Facile synthesis of NiCo2S4 nanosheets on graphitized carbon microspheres for high-performance asymmetric supercapacitors
    Chen, Xiaobo
    Ding, Bingxin
    Sun, Yuting
    JOURNAL OF ENERGY STORAGE, 2021, 35
  • [32] MnO2 nanorod loaded activated carbon for high-performance supercapacitors
    Kour, Simran
    Tanwar, Shweta
    Sharma, A. L.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 910
  • [33] In-situ synthesis of MnO dispersed carbon nanofibers as binder-free electrodes for high-performance supercapacitors
    Radhakanth, Shriram
    Singhal, Richa
    CHEMICAL ENGINEERING SCIENCE, 2023, 265
  • [34] Facile synthesis of mesoporous MnO2 microspheres for high performance AC//MnO2 aqueous hybrid supercapacitors
    Li, Hehe
    Zhang, Xiangdong
    Ding, Rui
    Qi, Li
    Wang, Hongyu
    ELECTROCHIMICA ACTA, 2013, 108 : 497 - 505
  • [35] Facile synthesis of high-performance Ni(OH)2/expanded graphite electrodes for asymmetric supercapacitors
    Yuan, Jiawei
    Tang, Shuihua
    Zhu, Zhentao
    Qin, Xiaolong
    Qu, Renjie
    Deng, Yuxiao
    Wu, Lingshan
    Li, Jie
    Haarberg, Geir Martin
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (23) : 18022 - 18030
  • [36] Facile synthesis of high-performance Ni(OH)2/expanded graphite electrodes for asymmetric supercapacitors
    Jiawei Yuan
    Shuihua Tang
    Zhentao Zhu
    Xiaolong Qin
    Renjie Qu
    Yuxiao Deng
    Lingshan Wu
    Jie Li
    Geir Martin Haarberg
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 18022 - 18030
  • [37] Electrochemical growth of α-MnO2 on carbon fibers for high-performance binder-free electrodes of supercapacitors
    Chen, Ya
    Guan, Jie-Hao
    Gan, Hui
    Chen, Bai-Zhen
    Shi, Xi-Chang
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2018, 48 (01) : 105 - 113
  • [38] Electrochemical growth of α-MnO2 on carbon fibers for high-performance binder-free electrodes of supercapacitors
    Ya Chen
    Jie-Hao Guan
    Hui Gan
    Bai-Zhen Chen
    Xi-Chang Shi
    Journal of Applied Electrochemistry, 2018, 48 : 105 - 113
  • [39] Direct Interfacial Growth of MnO2 Nanostructure on Hierarchically Porous Carbon for High-Performance Asymmetric Supercapacitors
    Wang, Xi
    Chen, Shuai
    Li, Daohao
    Sun, Shenglei
    Peng, Zhi
    Komarneni, Sridhar
    Yang, Dongjiang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (01): : 633 - 641
  • [40] Direct interfacial growth of MnO2 nanoparticles on carbon nanofiber surfaces for high-performance asymmetric supercapacitors
    Zhao, Chang-Feng
    Lu, Ke
    Ma, Houyi
    RSC ADVANCES, 2016, 6 (109) : 107638 - 107643