New Lorentz spaces for the restricted weak-type Hardy's inequalities

被引:3
作者
Martín, J [1 ]
Soria, J [1 ]
机构
[1] Autonomous Univ Barcelona, Dept Appl Math, E-08193 Barcelona, Spain
关键词
Hardy operator; Lorentz spaces; monotone functions; weighted inequalities;
D O I
10.1016/S0022-247X(02)00584-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Associated to the class of restricted weak-type weights for the Hardy operator R-p, we find a new class of Lorentz spaces for which the normability property holds. This result is analogous to the characterization given by Sawyer for the classical Lorentz spaces. We also show that these new spaces are very natural to study the existence of equivalent norms described in terms of the maximal function. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:138 / 152
页数:15
相关论文
共 10 条
  • [1] MAXIMAL FUNCTIONS ON CLASSICAL LORENTZ SPACES AND HARDY INEQUALITY WITH WEIGHTS FOR NONINCREASING FUNCTIONS
    ARINO, MA
    MUCKENHOUPT, B
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 320 (02) : 727 - 735
  • [2] Bennet C., 1988, INTERPOLATION OPERAT
  • [3] On embeddings between classical Lorentz spaces
    Carro, M
    Pick, L
    Soria, J
    Stepanov, VD
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2001, 4 (03): : 397 - 428
  • [4] Weak-type weights and normable Lorentz spaces
    Carro, MJ
    DelAmo, AG
    Soria, J
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (03) : 849 - 857
  • [5] WEIGHTED LORENTZ SPACES AND THE HARDY OPERATOR
    CARRO, MJ
    SORIA, J
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 112 (02) : 480 - 494
  • [6] Cerdà J, 2000, STUD MATH, V139, P189
  • [7] Lorentz GG., 1951, Pacific J. Math., V1, P411, DOI [10.2140/pjm.1951.1.411, DOI 10.2140/PJM.1951.1.411]
  • [8] NEUGEBAUER CJ, 1991, PUBL MAT, V35, P429, DOI [DOI 10.5565/PUBLMAT_, DOI 10.5565/PUBLMAT_35291_07, 10.5565/PUBLMAT_35291_07]
  • [9] BOUNDEDNESS OF CLASSICAL OPERATORS ON CLASSICAL LORENTZ SPACES
    SAWYER, E
    [J]. STUDIA MATHEMATICA, 1990, 96 (02) : 145 - 158
  • [10] Soria J, 1998, Q J MATH, V49, P93