Object-Aware Tracking

被引:0
作者
Bogun, Ivan [1 ]
Ribeiro, Eraldo [1 ]
机构
[1] Florida Inst Technol, Dept Comp Sci, Melbourne, FL 32901 USA
来源
2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) | 2016年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we address the problem of visual tracking in videos without using a pre-learned model of the object. This type of model-free tracking is a hard problem because of limited information about the object, abrupt object motion, and shape deformation. We propose to integrate an object-agnostic prior, called objectness, which is designed to measure the likelihood of a given location to contain an object of any type, into structured tracking framework. Our objectness prior is based on image segmentation and edges; thus, it does not require training data. By extending a structured tracker with the prior, we introduce a new tracker which we call ObjStruck. We extensively evaluate our tracker on publicly available datasets and show that objectness prior improves tracking accuracy.
引用
收藏
页码:1695 / 1700
页数:6
相关论文
共 30 条
[1]   Measuring the Objectness of Image Windows [J].
Alexe, Bogdan ;
Deselaers, Thomas ;
Ferrari, Vittorio .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2189-2202
[2]  
[Anonymous], 2016, NOVEL PERFORMANCE EV
[3]  
[Anonymous], 2014, ECCV
[4]  
[Anonymous], ARXIV150100909
[5]  
Babenko B, 2009, PROC CVPR IEEE, P983, DOI 10.1109/CVPRW.2009.5206737
[6]  
Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
[7]  
Bordes A, 2008, LECT NOTES ARTIF INT, V5211, P146, DOI 10.1007/978-3-540-87479-9_28
[8]   Salient Object Detection: A Benchmark [J].
Borji, Ali ;
Sihite, Dicky N. ;
Itti, Laurent .
COMPUTER VISION - ECCV 2012, PT II, 2012, 7573 :414-429
[9]   CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts [J].
Carreira, Joao ;
Sminchisescu, Cristian .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (07) :1312-1328
[10]   BING: Binarized Normed Gradients for Objectness Estimation at 300fps [J].
Cheng, Ming-Ming ;
Zhang, Ziming ;
Lin, Wen-Yan ;
Torr, Philip .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :3286-3293