Thom polynomials and schur functions:: Towards the singularities Ai(-)

被引:0
作者
Pragacz, Piotr [1 ]
机构
[1] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
来源
REAL AND COMPLEX SINGULARITIES | 2008年 / 459卷
关键词
Thom polynomials; singularities; global singularity theory; classes of degeneracy loci; Schur functions; resultants;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop algebro-combinatorial tools for computing the Thom polynomials for the Morin singularities A(i)(-) (i >= 0). The main tool is the function F-r((i)) defined as a combination of Schur functions with certain numerical specializations of Schur polynomials as their coefficients. We show that the Thom polynomial T-Ai for the singularity A(i) (any i) associated with maps (C degrees, 0) -> (C degrees(+k), 0), with any parameter k >= 0, under the assumption that Sigma(j) = empty set for all j >= 2, is given by F-k+1((i)). Equivalently, this says that "the 1-part" of T-Ai equals F-k+1((i)). We investigate 2 examples when T-Ai apart from its 1-part consists also of the 2-part being a single Schur function with some multiplicity. Our computations combine the characterization of Thom polynomials via the "method of restriction equations" of Rimanyi et al. with the techniques of Schur functions.
引用
收藏
页码:165 / 178
页数:14
相关论文
共 41 条
[1]  
ARNOLD V, 1993, LOCAL GLOBAL THEORY, V6
[2]  
BERCZI G, ARXIVMATHAT0608285, V6
[3]  
BERCZI G., 2003, CONT MATH AMS, V324, P63
[4]   HOOK YOUNG-DIAGRAMS WITH APPLICATIONS TO COMBINATORICS AND TO REPRESENTATIONS OF LIE-SUPERALGEBRAS [J].
BERELE, A ;
REGEV, A .
ADVANCES IN MATHEMATICS, 1987, 64 (02) :118-175
[5]  
DAMON J, 1972, THESIS HARVARD
[6]  
DUPLESSIS A, 1995, OXFORD MATH MONOGRAP
[7]  
FEHER L, B LONDON MA IN PRESS
[8]   On second order Thom-Boardman singularities [J].
Feher, Laszlo M. ;
Komuves, Balazs .
FUNDAMENTA MATHEMATICAE, 2006, 191 (03) :249-264
[9]  
Feller L. M., 2002, CONT MATH, V354, P69
[10]  
FULTON W, 1998, SPRINGER LNM, V1689