Realizing ultrahigh-voltage performance of single-crystalline LiNi0.55Co0.15Mn0.3O2 cathode materials by simultaneous Zr-doping and B2O3-coating

被引:31
作者
Shen, Jixue [1 ]
Deng, Duo [1 ]
Li, Xiao [1 ]
Zhang, Bao [1 ]
Xiao, Zhiming [1 ]
Hu, Changqing [2 ]
Yan, Xiaozhi [3 ]
Ou, Xing [1 ]
机构
[1] Cent South Univ, Sch Met & Environm, Changsha 410008, Peoples R China
[2] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China
[3] Ningbo Univ, Sch Mat Sci & Chem Engn, State Key Lab Base Novel Funct Mat & Preparat Sci, Ningbo 315211, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Synergistic effect; Single-crystalline NCM; Zr doping; B2O3; coating; Lithium-ion batteries; LITHIUM-ION BATTERIES; REFERENCE ELECTRODE DESIGNS; ELECTROCHEMICAL PROPERTIES; STRUCTURAL STABILITY; 3-ELECTRODE SETUPS; CYCLING STABILITY; RATE CAPABILITY; LINIO2; CATHODE; OXIDE; SURFACE;
D O I
10.1016/j.jallcom.2022.163999
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Improving the high-voltage stability of cathode materials is a new strategy to enhance the energy density of lithium-ion batteries (LIBs) in recent years. However, as a traditional cathode material, the low reversible capacity at high cut-off voltages (>= 4.3 V) greatly restricts the application of LiCoO2. Herein, we have rationally synthesized a novel single-crystalline LiNi0.55Co0.15Mn0.3O2 cathode material (Z-NCM@B) by using the synergistic effect of Zr-doping and B2O3-coating. Excitedly, the modified Z-NCM@B cathode material shows improved high-voltage stability and excellent long-term cycling performance. Furthermore, it is revealed that the stronger ZreO bond formed by Zr4+ dopant can stabilize the crystal structure and promote the migration of Li+ in the cathode materials. Meanwhile, the uniform B2O3 coating layer effectively suppresses the material corrosion by electrolyte and reduces the loss of transition metal ions during the charge/ discharge cycle process. As anticipated, the Z2-NCM@B2 || graphite pouch-type full cell exhibits an advanced capacity retention of 96.9% over 250 cycles at an operating voltage of 4.2 V, while the capacity retention of the pristine NCM is only 88%. Besides, the Z2-NCM@B2 coin-cell retains a discharge capacity of 145.2 mA h g(-1) at 1 C with a satisfactory capacity retention of 79.2% after 100 cycles within a broad voltage range between 2.95 and 4.7 V, which is much superior than that for the pristine NCM (130.9 mA h g(-1), 70.9%). This synergistic modification strategy offers a reference for the practical application of NCM cathode materials with high-voltage stability and long-term cycling performance in LIBs. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 60 条
[1]   Time-domain fitting of battery electrochemical impedance models [J].
Alavi, S. M. M. ;
Birkl, C. R. ;
Howey, D. A. .
JOURNAL OF POWER SOURCES, 2015, 288 :345-352
[2]   Surface Modification of Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathode Material by Tungsten Oxide Coating for Improved Electrochemical Performance in Lithium-Ion Batteries [J].
Becker, Dina ;
Boerner, Markus ;
Noelle, Roman ;
Diehl, Marcel ;
Klein, Sven ;
Rodehorst, Uta ;
Schmuch, Richard ;
Winter, Martin ;
Placke, Tobias .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (20) :18404-18414
[3]   Optimization of B2O3 coating process for NCA cathodes to achieve long-term stability for application in lithium ion batteries [J].
Chen, Jiasheng ;
Wang, Xuan Liang ;
Jin, En Mei ;
Moon, Seung-Guen ;
Jeong, Sang Mun .
ENERGY, 2021, 222
[4]   Synthesis and characterization of Zr-doped LiNi0.4Co0.2Mn0.4O2 cathode materials for lithium ion batteries [J].
Chen, QiYuan ;
Du, Chenqiang ;
Qu, Deyang ;
Zhang, Xinhe ;
Tang, Zhiyuan .
RSC ADVANCES, 2015, 5 (92) :75248-75253
[5]   Three-Electrode Setups for Lithium-Ion Batteries II. Experimental Study of Different Reference Electrode Designs and Their Implications for Half-Cell Impedance Spectra [J].
Costard, J. ;
Ender, M. ;
Weiss, M. ;
Ivers-Tiffee, E. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (02) :A80-A87
[6]   Metallurgy Inspired Formation of Homogeneous Al2O3 Coating Layer To Improve the Electrochemical Properties of LiNi0.8Co0.1Mn0.1O2 Cathode Material [J].
Dong, Mingxia ;
Wang, Zhixing ;
Li, Hangkong ;
Guo, Huajun ;
Li, Xinhai ;
Shih, Kaimin ;
Wang, Jiexi .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (11) :10199-10205
[7]   Three-Electrode Setups for Lithium-Ion Batteries I. Fem-Simulation of Different Reference Electrode Designs and Their Implications for Half-Cell Impedance Spectra [J].
Ender, M. ;
Illig, J. ;
Ivers-Tiffee, E. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (02) :A71-A79
[8]   Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries [J].
Fan, Xinming ;
Hu, Guorong ;
Zhang, Bao ;
Ou, Xing ;
Zhang, Jiafeng ;
Zhao, Wengao ;
Jia, Haiping ;
Zou, Lianfeng ;
Li, Peng ;
Yang, Yong .
NANO ENERGY, 2020, 70
[9]   In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes [J].
Fan, Xinming ;
Ou, Xing ;
Zhao, Wengao ;
Liu, Yun ;
Zhang, Bao ;
Zhang, Jiafeng ;
Zou, Lianfeng ;
Seidl, Lukas ;
Li, Yangzhong ;
Hu, Guorong ;
Battaglia, Corsin ;
Yang, Yong .
NATURE COMMUNICATIONS, 2021, 12 (01)
[10]   Surface Modification for Suppressing Interfacial Parasitic Reactions of a Nickel-Rich Lithium-Ion Cathode [J].
Gao, Han ;
Cai, Jiyu ;
Xu, Gui-Liang ;
Lo, Luxi ;
Ren, Yang ;
Meng, Xiangbo ;
Amine, Khalil ;
Chen, Zonghai .
CHEMISTRY OF MATERIALS, 2019, 31 (08) :2723-2730