共 2 条
Latent heat flux variability and response to drought stress of black poplar: A multi-platform multi-sensor remote and proximal sensing approach to relieve the data scarcity bottleneck
被引:11
|作者:
Tauro, Flavia
[1
]
Maltese, Antonino
[2
]
Giannini, Roberto
[3
]
Harfouche, Antoine
[1
]
机构:
[1] Univ Tuscia, Dept Innovat Biol Agrofood & Forest Syst, I-01100 Viterbo, Italy
[2] Univ Palermo, Dept Engn, I-90128 Palermo, Italy
[3] Univ Tuscia, Dept Econ Engn Soc & Business Org, I-01100 Viterbo, Italy
关键词:
Evapotranspiration;
Multi-platform;
multi-resolution;
Priestley-Taylor equation;
satellite remote sensing;
UAV remote sensing;
FRACTIONAL VEGETATION COVER;
SURFACE-ENERGY BALANCE;
TRIANGLE METHOD;
SOIL-MOISTURE;
WATER-STRESS;
EVAPOTRANSPIRATION ASSESSMENT;
BARE SOIL;
EVAPORATION;
TEMPERATURE;
RESILIENCE;
D O I:
10.1016/j.rse.2021.112771
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
High-throughput mapping of latent heat flux (MET) is critical to efforts to optimize water resources management and to accelerate forest tree breeding for improved drought tolerance. Ideally, investigation of the energy response at the tree level may promote tailored irrigation strategies and, thus, maximize crop biomass productivity. However, data availability is limited and planning experimental campaigns in the field can be highly operationally complex. To this end, a multi-platform multi-sensor observational approach is herein developed to dissect the MET signature of a black poplar (Populus nigra) breeding population ("POP6") at the canopy level. POP6 comprised more than 4600 trees representing 503 replicated genotypes, whose parents were derived from contrasting environmental conditions. Trees were trialed in two adjacent plots where different irrigation treatments (moderate drought [mDr] and well-watered [WW]) were applied. Data collected from satellite and unmanned aerial vehicles (UAVs) remote sensing as well as from ground-based proximal sensors were integrated at consistent spatial aggregation and combined to compute the surface energy balance of the trees through a modified Priestley-Taylor method. Here, we demonstrated that MET response was significantly different between WW and mDr trees, whereby genotypes in mDr conditions exhibited larger standard deviations. Importantly, genotypes classified as drought tolerant based on the stress susceptibility index (SSI) presented MET values significantly higher than the rest of the population. This study confirmed that water limitation in mDr settings led to reduced soil moisture in the tree root zone and, thus, to lower MET. These results pave the way to breeding poplar and other bioenergy crops with this underexploited trait for higher MET. Most notably, the illustrated work demonstrates a multi-platform multi-sensor data fusion approach to tackle the global challenge of monitoring landscape-scale ecosystem processes at fine resolution.
引用
收藏
页数:14
相关论文