Electronic structure investigation of GdNi using x-ray absorption, magnetic circular dichroism, and hard x-ray photoemission spectroscopy

被引:9
|
作者
Chuang, C. W. [1 ]
Lin, H. J. [1 ]
de Groot, F. M. F. [2 ]
Chang, F. H. [1 ]
Chen, C. T. [1 ]
Chin, Y. Y. [3 ]
Liao, Y. F. [1 ]
Tsuei, K. D. [1 ]
Chelvane, J. Arout [4 ]
Nirmala, R. [5 ]
Chainani, A. [1 ]
机构
[1] Natl Synchrotron Radiat Res Ctr, Hsinchu Sci Pk, Hsinchu 30076, Taiwan
[2] Univ Utrecht, Inorgan Chem & Catalysis, Univ Weg 99, NL-3584 CG Utrecht, Netherlands
[3] Natl Chung Cheng Univ, Dept Phys, Chiayi 62102, Taiwan
[4] Def Met Res Lab, Hyderabad 500058, India
[5] Indian Inst Technol Madras, Dept Phys, Chennai 600036, Tamil Nadu, India
关键词
TRANSITION-METALS; 3D; CRYSTAL; SPECTRA; STATES; FE;
D O I
10.1103/PhysRevB.101.115137
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
GdNi is a ferrimagnetic material with a Curie temperature T-c = 69 K which exhibits a large magnetocaloric effect, making it useful for magnetic refrigerator applications. We investigate the electronic structure of GdNi by carrying out x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) at T = 25 K in the ferrimagnetic phase. We analyze the Gd M-4,M-5-edge (3d-4f) and Ni L-2,L-3-edge (2p-3d) spectra using atomic multiplet and cluster model calculations, respectively. The atomic multiplet calculation for Gd M-4,M-5-edge XAS indicates that Gd is trivalent in GdNi, consistent with localized 4f states. On the other hand, a model cluster calculation for Ni L-2,L-3-edge XAS shows that Ni is effectively divalent in GdNi and strongly hybridized with nearest-neighbor Gd states, resulting in a d-electron count of 8.57. The Gd M-4,M-5-edge XMCD spectrum is consistent with a ground-state configuration of S = 7/2 and L = 0. The Ni L-2,L-3-edge XMCD results indicate that the antiferromagnetically aligned Ni moments exhibit a small but finite total magnetic moment (m(tot) similar to 0.12 mu(B)) with the ratio m(o)/m(s) similar to 0.11. Valence band hard x-ray photoemission spectroscopy shows Ni 3d features at the Fermi level, confirming a partially filled 3d band, while the Gd 4f states are at high binding energies away from the Fermi level. The results indicate that the Ni 3d band is not fully occupied and contradicts the charge-transfer model for rare-earth based alloys. The obtained electronic parameters indicate that GdNi is a strongly correlated charge-transfer metal with the Ni on-site Coulomb energy being much larger than the effective charge-transfer energy between the Ni 3d and Gd 4f states.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Magnetic circular dichroism of X-ray spectroscopy for spinel-type ferrites in hard X-ray region: X-ray absorption, X-ray emission, and X-ray photoemission
    Kawamura, N.
    Ikenaga, E.
    Mizumaki, M.
    Hiraoka, N.
    Yanagihara, H.
    Maruyama, H.
    JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2017, 220 : 81 - 85
  • [2] Hard x-ray photoemission spectroscopy of GdNi and HoNi
    Chuang, C. W.
    de Groot, F. M. F.
    Liao, Y. F.
    Chin, Y. Y.
    Tsuei, K. D.
    Nirmala, R.
    Malterre, D.
    Chainani, A.
    PHYSICAL REVIEW B, 2020, 102 (16)
  • [3] Electronic and magnetic properties of MnAs nanoclusters studied by x-ray absorption spectroscopy and x-ray magnetic circular dichroism
    Okabayashi, J
    Mizuguchi, M
    Oshima, M
    Shimizu, H
    Tanaka, M
    Yuri, M
    Chen, CT
    APPLIED PHYSICS LETTERS, 2003, 83 (26) : 5485 - 5487
  • [4] Femtosecond X-ray magnetic circular dichroism absorption spectroscopy at an X-ray free electron laser
    Higley, Daniel J.
    Hirsch, Konstantin
    Dakovski, Georgi L.
    Jal, Emmanuelle
    Yuan, Edwin
    Liu, Tianmin
    Lutman, Alberto A.
    MacArthur, James P.
    Arenholz, Elke
    Chen, Zhao
    Coslovich, Giacomo
    Denes, Peter
    Granitzka, Patrick W.
    Hart, Philip
    Hoffmann, Matthias C.
    Joseph, John
    Le Guyader, Loic
    Mitra, Ankush
    Moeller, Stefan
    Ohldag, Hendrik
    Seaberg, Matthew
    Shafer, Padraic
    Stoehr, Joachim
    Tsukamoto, Arata
    Nuhn, Heinz-Dieter
    Reid, Alex H.
    Duerr, Hermann A.
    Schlotter, William F.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (03):
  • [5] Magnetic dichroism in X-ray absorption spectroscopy
    vanderLaan, G
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1996, 156 (1-3) : 99 - 103
  • [6] Magnetic Circular Dichroism in the Hard X-ray Range
    Rogalev, A.
    Wilhelm, F.
    PHYSICS OF METALS AND METALLOGRAPHY, 2015, 116 (13): : 1285 - 1336
  • [7] Magnetic circular dichroism in the hard X-ray range
    A. Rogalev
    F. Wilhelm
    The Physics of Metals and Metallography, 2015, 116 : 1285 - 1336
  • [8] Magnetic dichroism in X-ray photoemission
    Grebennikov, V. I.
    PHYSICS OF METALS AND METALLOGRAPHY, 2009, 107 (06): : 523 - 533
  • [9] Magnetic dichroism in X-ray photoemission
    V. I. Grebennikov
    The Physics of Metals and Metallography, 2009, 107 : 523 - 533
  • [10] X-ray microscopy with X-ray Magnetic Circular Dichroism
    Fischer, P
    Schutz, G
    Schmahl, G
    Guttmann, P
    Raasch, D
    JOURNAL DE PHYSIQUE IV, 1997, 7 (C2): : 467 - 468