Enhancement of solar water disinfection using H2O2 generated in situ by electrochemical reduction

被引:47
作者
Jin, Yanchao [1 ,2 ]
Shi, Yijun [1 ]
Chen, Ziyu [1 ]
Chen, Riyao [1 ,2 ]
Chen, Xiao [1 ,2 ]
Zheng, Xi [1 ,2 ]
Liu, Yaoxing [1 ,2 ]
Ding, Rui [1 ,2 ]
机构
[1] Fujian Normal Univ, Coll Environm Sci & Engn, Fuzhou 350007, Peoples R China
[2] Fujian Key Lab Pollut Control & Resource Reuse, Fuzhou 350007, Peoples R China
关键词
electro/SODIS; E; coli; Drinking water; H2O2; Energy consumption; PHOTO-FENTON; ENTEROCOCCUS-FAECALIS; ESCHERICHIA-COLI; WASTE-WATER; HYDROGEN-PEROXIDE; SINGLET OXYGEN; ELECTRO-FENTON; INACTIVATION; SODIS; DEGRADATION;
D O I
10.1016/j.apcatb.2020.118730
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, the solar water disinfection (SODIS) process was enhanced by in situ generated H2O2, and the influences of current, temperature, bacterial load, humic acid (HA), and bicarbonate were investigated. The results revealed that 1.29 kJ/L of electricity consumption reduced the treatment time by 40 % and decreased the required solar energy from 235.95-141.58 kJ/L. O-1(2) was the main reactive oxygen species (ROS), which played an important role. Increasing the current from 15 to 25 mA improved the cumulative H2O2 production, but it had no effect on the disinfection rate. Bicarbonate markedly suppressed E. coli inactivation. Decreasing the initial E. coli concentration reduced the required treatment time from 180 to 120 min. Increasing the temperature had a positive effect on the disinfection. HA concentration of 1 mg/L was the best for E. coli inactivation. In the presence of higher HA concentrations, it required a longer treatment time.
引用
收藏
页数:7
相关论文
共 41 条
[1]   Improvement of solar based rainwater disinfection by using lemon and vinegar as catalysts [J].
Amin, M. T. ;
Han, M. Y. .
DESALINATION, 2011, 276 (1-3) :416-424
[2]   A comparative study of the electrogeneration of hydrogen peroxide using Vulcan and Printex carbon supports [J].
Assumpcao, M. H. M. T. ;
De Souza, R. F. B. ;
Rascio, D. C. ;
Silva, J. C. M. ;
Calegaro, M. L. ;
Gaubeur, I. ;
Paixao, T. R. L. C. ;
Hammer, P. ;
Lanza, M. R. V. ;
Santos, M. C. .
CARBON, 2011, 49 (08) :2842-2851
[3]   Disinfection of water inoculated with Enterococcus faecalis using solar/Fe(III)EDDS-H2O2 or S2O82- process [J].
Bianco, A. ;
Polo-Lopez, M. I. ;
Fernandez-Ibanez, P. ;
Brigante, M. ;
Mailhot, G. .
WATER RESEARCH, 2017, 118 :249-260
[4]   Solar disinfection of wastewater to reduce contamination of lettuce crops by Escherichia coli in reclaimed water irrigation [J].
Bichai, Francoise ;
Inmaculada Polo-Lopez, M. ;
Fernandez Ibanez, Pilar .
WATER RESEARCH, 2012, 46 (18) :6040-6050
[5]   Kinetics of thermal inactivation of catalase in the presence of additives [J].
Cantemir, Anca Ruxandra ;
Raducan, Adina ;
Puiu, Mihaela ;
Oancea, Dumitru .
PROCESS BIOCHEMISTRY, 2013, 48 (03) :471-477
[6]   Validation of a solar-thermal water disinfection model for Escherichia coli inactivation in pilot scale solar reactors and real conditions [J].
Castro-Alferez, Maria ;
Inmaculada Polo-Lopez, Maria ;
Marugan, Javier ;
Fernandez-Ibanez, Pilar .
CHEMICAL ENGINEERING JOURNAL, 2018, 331 :831-840
[7]   Graphitic biochar catalysts from anaerobic digestion sludge for nonradical degradation of micropollutants and disinfection [J].
Chen, Yi-di ;
Duan, Xiaoguang ;
Zhang, Chaofan ;
Wang, Shaobin ;
Ren, Nan-qi ;
Ho, Shih-Hsin .
CHEMICAL ENGINEERING JOURNAL, 2020, 384
[8]   Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes [J].
Cheng, Xin ;
Guo, Hongguang ;
Zhang, Yongli ;
Wu, Xiao ;
Liu, Yang .
WATER RESEARCH, 2017, 113 :80-88
[9]   Improvement of the degradation of pesticide deethylatrazine by combining UV photolysis with electrochemical generation of hydrogen peroxide [J].
Frangos, Phivos ;
Shen, Wenhua ;
Wang, Huijiao ;
Li, Xiang ;
Yu, Gang ;
Deng, Shubo ;
Huang, Jun ;
Wang, Bin ;
Wang, Yujue .
CHEMICAL ENGINEERING JOURNAL, 2016, 291 :215-224
[10]   Kinetic modelling of Fe(III)/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound [J].
Gallard, H ;
De Laat, J .
WATER RESEARCH, 2000, 34 (12) :3107-3116