Effects of nanoparticles on the adhesion and cell viability on astrocytes

被引:66
作者
Au, Catherine
Mutkus, Lysette
Dobson, Allison
Riffle, Judy
Lalli, Jennifer
Aschner, Michael
机构
[1] Vanderbilt Univ, Med Ctr, Dept Pediat & Pharmacol, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Med Ctr, Kennedy Ctr Res Human Dev, Nashville, TN 37232 USA
[3] Vanderbilt Univ, Med Ctr, Ctr Mol Neurosci, Nashville, TN 37232 USA
[4] Wake Forest Univ, Sch Med, Dept Physiol & Pharmacol, Winston Salem, NC 27109 USA
[5] Winston Salem State Univ, Dept Life Sci, Winston Salem, NC USA
[6] NanoSci Inc, Blacksburg, VA USA
关键词
nanoparticles; astrocytes; cytotoxicity; cell adhesion;
D O I
10.1007/s12011-007-0067-z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In recent years, both pharmaceutical companies and manufacturing industries have expressed heightened interest in the potential applications of magnetic nanoparticles for therapeutic and technological purposes. Specifically, pharmaceutical companies seek to employ magnetic nanoparticles as carriers to facilitate effective drug delivery, especially in areas of the brain. Manufacturing industries desire to use these nanoparticles as ferrofluids and in magnetic resonance imaging. However, data concerning the effects of magnetic nanoparticles on the nervous system is limited. This study tested the hypotheses that nanoparticles can (1) inhibit adherence of astrocytes to culture plates and (2) cause cytotoxicity or termination of growth, both end points representing surrogate markers of neurotoxicity. Using light microscopy, changes in plating patterns were determined by visual assessment. Cell counting 4 days after plating revealed a significant decrease in the number of viable astrocytes in nanoparticle treated groups (p < 0.0001). To determine the cytotoxic effects of nanoparticles, astrocytes were allowed to adhere to culture plates and grow to maturity for 3 weeks before treatment. Membrane integrity and mitochondrial function were measured using colorimetric analysis lactate dehydrogenase (LDH) and 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTS), respectively. Treatment with nanoparticles did not significantly alter astrocytic LDH release (p > 0.05) in the control group (100%+/- 1.56) vs the group receiving treatment (97.18%+/- 2.03). However, a significant increase in MTS activity (p < 0.05) between the control (100%+/- 3.65) and treated groups (112.8%+/- 3.23) was observed, suggesting astrocytic mitochondrial uncoupling by nanoparticles. These data suggest that nanoparticles impede the attachment of astrocytes to the substratum. However, once astrocytes attach to the substratum and grow to confluence, nanoparticles may cause mitochondrial stress.
引用
收藏
页码:248 / 256
页数:9
相关论文
共 42 条
[1]   ASTROCYTE ENDOTHELIAL INTERACTION - PHYSIOLOGY AND PATHOLOGY [J].
ABBOTT, NJ ;
REVEST, PA ;
ROMERO, IA .
NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY, 1992, 18 (05) :424-433
[2]   Interaction of poly(butylcyanoacrylate) nanoparticles with the blood-brain barrier in vivo and in vitro [J].
Alyaudtin, RN ;
Reichel, A ;
Löbenberg, R ;
Ramge, P ;
Kreuter, J ;
Begley, DJ .
JOURNAL OF DRUG TARGETING, 2001, 9 (03) :209-+
[3]  
Aschner M, 1996, NEUROTOXICOLOGY, V17, P663
[4]   STEALTH ME.PEG-PLA NANOPARTICLES AVOID UPTAKE BY THE MONONUCLEAR PHAGOCYTES SYSTEM [J].
BAZILE, D ;
PRUDHOMME, C ;
BASSOULLET, MT ;
MARLARD, M ;
SPENLEHAUER, G ;
VEILLARD, M .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1995, 84 (04) :493-498
[6]  
Berg J.M., 2002, Biochemistry, P465
[7]   Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery [J].
Calvo, P ;
Gouritin, B ;
Chacun, H ;
Desmaële, D ;
D'Angelo, J ;
Noel, JP ;
Georgin, D ;
Fattal, E ;
Andreux, JP ;
Couvreur, P .
PHARMACEUTICAL RESEARCH, 2001, 18 (08) :1157-1166
[8]   Lipophilic drug loaded nanospheres prepared by nanoprecipitation: effect of formulation variables on size, drug recovery and release kinetics [J].
Chorny, M ;
Fishbein, I ;
Danenberg, HD ;
Golomb, G .
JOURNAL OF CONTROLLED RELEASE, 2002, 83 (03) :389-400
[9]   USE OF AN AQUEOUS SOLUBLE TETRAZOLIUM FORMAZAN ASSAY FOR CELL-GROWTH ASSAYS IN CULTURE [J].
CORY, AH ;
OWEN, TC ;
BARLTROP, JA ;
CORY, JG .
CANCER COMMUNICATIONS, 1991, 3 (07) :207-212
[10]   A QUICK AND SIMPLE METHOD FOR THE QUANTITATION OF LACTATE-DEHYDROGENASE RELEASE IN MEASUREMENTS OF CELLULAR CYTO-TOXICITY AND TUMOR NECROSIS FACTOR (TNF) ACTIVITY [J].
DECKER, T ;
LOHMANNMATTHES, ML .
JOURNAL OF IMMUNOLOGICAL METHODS, 1988, 115 (01) :61-69