Simultaneous improvement of magnetic-field-induced working temperature and mechanical properties in Ni-Mn-In shape memory alloy

被引:7
作者
Ma, Tianyou [1 ,2 ]
Zhang, Kun [1 ]
Han, Binglun [1 ]
Zhao, Lei [1 ]
Zhao, Wenbin [1 ]
Wang, Cheng [1 ]
Liu, Rui [1 ]
Tian, Xiaohua [3 ]
Tan, Changlong [1 ]
机构
[1] Harbin Univ Sci & Technol, Sch Sci, Harbin University of Scie, Peoples R China
[2] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang, Peoples R China
[3] Harbin Univ Sci & Technol, Sch Elect & Elect Engn, Harbin, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
MARTENSITIC-TRANSFORMATION; BEHAVIOR; DEPENDENCE;
D O I
10.1063/5.0092428
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ni-Mn-In magnetic shape memory alloys, which can be stimulated by an external magnetic field, exhibit a fast response and have aroused wide attention in the field of electro-mechanical actuators. However, the low working temperature and the inherent brittleness severely limit their application scenarios. Here, an effective strategy is proposed to improve the magnetic-field-induced working temperature and mechanical properties in Ni-Mn-In shape memory alloys. We predict that the Ni16Mn12In4 alloy with Pt doping can solve the problems simultaneously through a comprehensive first-principles study. The calculations show that Pt occupying Ni sites can increase the martensitic temperature (T-M) and Curie temperature (T-C) simultaneously. T-M and T-C of Ni14Mn12In4Pt2 are predicted to be as high as 440 and 476 K, respectively. This is mainly due to the increased phase stability of the martensite and Pt-Mn bonds having stronger ferromagnetic exchange effects than Ni-Mn bonds after Pt doping. Moreover, according to the increase of B/G and v after Pt doping, it can be concluded that the mechanical properties of the alloy have been improved. (C) 2022 Author(s).
引用
收藏
页数:8
相关论文
共 60 条
[1]   Shape memory properties of Ti-Nb-Mo biomedical alloys [J].
Al-Zain, Y. ;
Kim, H. Y. ;
Hosoda, H. ;
Nam, T. H. ;
Miyazaki, S. .
ACTA MATERIALIA, 2010, 58 (12) :4212-4223
[2]   Improvement in the Shape Memory Response of Ti50.5Ni24.5Pd25 High-Temperature Shape Memory Alloy with Scandium Microalloying [J].
Atli, K. C. ;
Karaman, I. ;
Noebe, R. D. ;
Garg, A. ;
Chumlyakov, Y. I. ;
Kireeva, I. V. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2010, 41A (10) :2485-2497
[3]   Excellent mechanical properties and large magnetocaloric effect of spark plasma sintered Ni-Mn-In-Co alloy [J].
Bai, Jing ;
Liu, Die ;
Gu, Jianglong ;
Jiang, Xinjun ;
Liang, Xinzeng ;
Guan, Ziqi ;
Zhang, Yudong ;
Esling, Claude ;
Zhao, Xiang ;
Zuo, Liang .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 74 :46-51
[4]   First-principle investigations of martensitic transformation and magnetic properties in Ni24Mn17-xIn7Cux (x=0-5) alloys [J].
Bai, Jing ;
Liu, Die ;
Gu, Jianglong ;
Shi, Shaofeng ;
Liang, Xinzeng ;
Yan, Haile ;
Zhang, Yudong ;
Esling, Claude ;
Zhao, Xiang ;
Zuo, Liang .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 516
[5]   Interfacial defects in Ti-Nb shape memory alloys [J].
Chai, Y. W. ;
Kim, H. Y. ;
Hosoda, H. ;
Miyazaki, S. .
ACTA MATERIALIA, 2008, 56 (13) :3088-3097
[6]   Martensitic transformation in Co2NiGa ferromagnetic shape memory alloys [J].
Craciunescu, C ;
Kishi, Y ;
Lograsso, TA ;
Wuttig, M .
SCRIPTA MATERIALIA, 2002, 47 (04) :285-288
[7]   Effects of thermal treatments on transformation behaviour in shape memory Cu-Al-Ni alloys [J].
Dagdelen, F ;
Gokhan, T ;
Aydogdu, A ;
Aydogdu, Y ;
Adigüzel, O .
MATERIALS LETTERS, 2003, 57 (5-6) :1079-1085
[8]   Photoemission study of the (100) surface of Ni2MnGa and Mn2NiGa ferromagnetic shape memory alloys [J].
Dhaka, R. S. ;
D'Souza, S. W. ;
Maniraj, M. ;
Chakrabarti, Aparna ;
Schlagel, D. L. ;
Lograsso, T. A. ;
Barman, S. R. .
SURFACE SCIENCE, 2009, 603 (13) :1999-2004
[9]   Effect of Thermomechanical Processing on the Microstructure and Properties of a Cu-Fe-P Alloy [J].
Dong, Qiyi ;
Shen, Leinuo ;
Cao, Feng ;
Jia, Yanlin ;
Liao, Kaiju ;
Wang, Mingpu .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2015, 24 (04) :1531-1539
[10]   Modelling the phase diagram of magnetic shape memory Heusler alloys [J].
Entel, P ;
Buchelnikov, VD ;
Khovailo, VV ;
Zayak, AT ;
Adeagbo, WA ;
Gruner, ME ;
Herper, HC ;
Wassermann, EF .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2006, 39 (05) :865-889