State filtering-based least squares parameter estimation for bilinear systems using the hierarchical identification principle

被引:124
|
作者
Zhang, Xiao [1 ]
Ding, Feng [1 ]
Xu, Ling [1 ]
Yang, Erfu [2 ]
机构
[1] Jiangnan Univ, Minist Educ, Lab Adv Proc Control Light Ind, Sch Internet Things Engn, Wuxi 214122, Peoples R China
[2] Univ Strathclyde, Strathclyde Space Inst, Space Mechatronic Syst Technol Lab, Dept Design Manfacture & Engn Management, Glasgow G1 1XJ, Lanark, Scotland
来源
IET CONTROL THEORY AND APPLICATIONS | 2018年 / 12卷 / 12期
基金
中国国家自然科学基金;
关键词
parameter estimation; state estimation; bilinear systems; identification; least squares approximations; recursive estimation; gradient methods; Kalman filters; filtering theory; observers; state-space methods; linear systems; bilinear system; observer canonical state-space model; hierarchical identification principle; Kalman filter; state filter; bilinear state observer; extremum principle; BSO-RLS algorithm; decomposition-coordination principle; hierarchical least squares algorithm; parameter tracking capability; squares parameter estimation; combined parameter; BSO-based forgetting factor recursive least squares algorithm; THRESHOLD DIVIDEND STRATEGY; MOVING AVERAGE NOISE; ESTIMATION ALGORITHM; MULTI-INNOVATION; JOINT STATE; DELAY; MODEL; NETWORKS; INPUTS;
D O I
10.1049/iet-cta.2018.0156
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study presents a combined parameter and state estimation algorithm for a bilinear system described by its observer canonical state-space model based on the hierarchical identification principle. The Kalman filter is known as the best state filter for linear systems, but not applicable for bilinear systems. Thus, a bilinear state observer (BSO) is designed to give the state estimates using the extremum principle. Then a BSO-based recursive least squares (BSO-RLS) algorithm is developed. For comparison with the BSO-RLS algorithm, by dividing the system into three fictitious subsystems on the basis of the decomposition-coordination principle, a BSO-based hierarchical least squares algorithm is proposed to reduce the computation burden. Moreover, a BSO-based forgetting factor recursive least squares algorithm is presented to improve the parameter tracking capability. Finally, a numerical example illustrates the effectiveness of the proposed algorithms.
引用
收藏
页码:1704 / 1713
页数:10
相关论文
共 50 条
  • [21] Iterative state and parameter estimation algorithms for bilinear state-space systems by using the block matrix inversion and the hierarchical principle
    Siyu Liu
    Feng Ding
    Erfu Yang
    Nonlinear Dynamics, 2021, 106 : 2183 - 2202
  • [22] Iterative state and parameter estimation algorithms for bilinear state-space systems by using the block matrix inversion and the hierarchical principle
    Liu, Siyu
    Ding, Feng
    Yang, Erfu
    NONLINEAR DYNAMICS, 2021, 106 (03) : 2183 - 2202
  • [23] Filtering-Based Parameter Identification Methods for Multivariable Stochastic Systems
    Xia, Huafeng
    Chen, Feiyan
    MATHEMATICS, 2020, 8 (12) : 1 - 19
  • [24] The filtering-based maximum likelihood iterative estimation algorithms for a special class of nonlinear systems with autoregressive moving average noise using the hierarchical identification principle
    Li, Meihang
    Liu, Ximei
    Ding, Feng
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2019, 33 (07) : 1189 - 1211
  • [25] The filtering-based recursive least squares identification and convergence analysis for nonlinear feedback control systems with coloured noises
    Xu, Ling
    Xu, Huan
    Wei, Chun
    Ding, Feng
    Zhu, Quanmin
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2024, 55 (16) : 3461 - 3484
  • [26] Data filtering-based least squares iterative algorithm for Hammerstein nonlinear systems by using the model decomposition
    Ma, Junxia
    Ding, Feng
    Yang, Erfu
    NONLINEAR DYNAMICS, 2016, 83 (04) : 1895 - 1908
  • [27] Data filtering-based least squares iterative algorithm for Hammerstein nonlinear systems by using the model decomposition
    Junxia Ma
    Feng Ding
    Erfu Yang
    Nonlinear Dynamics, 2016, 83 : 1895 - 1908
  • [28] Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle
    Ding, Feng
    Liu, Xinggao
    Chu, Jian
    IET CONTROL THEORY AND APPLICATIONS, 2013, 7 (02): : 176 - 184
  • [29] Signal frequency and parameter estimation for power systems using the hierarchical identification principle
    Cao, Yinni
    Liu, Zhanqiang
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (5-6) : 854 - 861
  • [30] Auxiliary Model Based Least Squares Iterative Algorithms for Parameter Estimation of Bilinear Systems Using Interval-Varying Measurements
    Li, Meihang
    Liu, Ximei
    IEEE ACCESS, 2018, 6 : 21518 - 21529