Explicit Lower Bounds Against Ω(n)-Rounds of Sum-of-Squares

被引:7
作者
Hopkins, Max [1 ]
Lin, Ting-Chun [1 ,2 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
[2] Hon Hai Res Inst, Taipei, Taiwan
来源
2022 IEEE 63RD ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS) | 2022年
关键词
Sum-of-Squares; Explicit Lower Bounds; 3-XOR; Quantum LDPC Codes; High Dimensional Expanders; ERROR-CORRECTING CODES; INTEGRALITY GAPS; VERTEX COVER; GAMES; NULLSTELLENSATZ; COMPLEXITY; PROOFS; SETS;
D O I
10.1109/FOCS54457.2022.00069
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We construct an explicit family of 3-XOR instances hard for Omega(n)-levels of the Sum-of-Squares (SoS) semi-definite programming hierarchy. Not only is this the first explicit construction to beat brute force search (beyond low-order improvements (Tulsiani 2021, Pratt 2021)), combined with standard gap amplification techniques it also matches the (optimal) hardness of random instances up to imperfect completeness (Grigoriev TCS 2001, Schoenebeck FOCS 2008). Our result is based on a new form of small-set high dimensional expansion (SS-HDX) inspired by recent breakthroughs in locally testable and quantum LDPC codes. Adapting the recent framework of Dinur, Filmus, Harsha, and Tulsiani (ITCS 2021) for SoS lower bounds from the Ramanujan complex to this setting, we show any (bounded-degree) SS-HDX can be transformed into a highly unsatisfiable 3-XOR instance that cannot be refuted by Omega(n)-levels of SoS. We then show Leverrier and Zemor's (Arxiv 2022) recent qLDPC construction gives the desired explicit family of bounded-degree SS-HDX. Incidentally, this gives the strongest known form of bi-directional high dimensional expansion to date.
引用
收藏
页码:662 / 673
页数:12
相关论文
共 70 条
[1]  
Alekhnovich Michael., 2005, P 37 ACM S THEORY CO, P294
[2]   Approximating Constraint Satisfaction Problems on High-Dimensional Expanders [J].
Alev, Vedat Levi ;
Jeronimo, Fernando Granha ;
Tulsiani, Madhur .
2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, :180-201
[3]  
Alon N., 2002, Proceedings 43rd Annual IEEE Symposium on Foundations of Computer Science, P73, DOI 10.1109/SFCS.2002.1181884
[4]  
Anari N, 2020, Arxiv, DOI arXiv:2001.00303
[5]   Log-Concave Polynomials II: High-Dimensional Walks and an FPRAS for Counting Bases of a Matroid [J].
Anari, Nima ;
Liu, Kuikui ;
Gharan, Shayan Oveis ;
Vinzant, Cynthia .
PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, :1-12
[6]  
Bafna M, 2022, PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, P1069
[7]  
Bafna M, 2021, Arxiv, DOI arXiv:2111.09444
[8]   Playing Unique Games on Certified Small-Set Expanders [J].
Bafna, Mitali ;
Barak, Boaz ;
Kothari, Pravesh K. ;
Schramm, Tselil ;
Steurer, David .
STOC '21: PROCEEDINGS OF THE 53RD ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2021, :1629-1642
[9]  
Barak B, 2018, Arxiv, DOI arXiv:1804.08662
[10]   Sum of Squares Lower Bounds from Pairwise Independence [J].
Barak, Boaz ;
Chan, Siu On ;
Kothari, Pravesh K. .
STOC'15: PROCEEDINGS OF THE 2015 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2015, :97-106