Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces

被引:48
作者
Yan, Xianjie [1 ]
Yang, Dachun [1 ]
Yuan, Wen [1 ]
机构
[1] Beijing Normal Univ, Lab Math & Complex Syst, Minist Educ China, Sch Math Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Ball quasi-Banach function space; Hardy space; finite atomic characterization; Campanato space; intrinsic square function;
D O I
10.1007/s11464-020-0849-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a ball quasi-Banach function space satisfying some mild additional assumptions andH(X)(Double-struck capital R-n) the associated Hardy-type space. In this article, we first establish the finite atomic characterization ofH(x)(Double-struck capital R-n). As an application, we prove that the dual space ofH(X)(Double-struck capital R-n) is the Campanato space associated withX. For any given alpha is an element of (0, 1] and s is an element of DOUBLE-STRUCK CAPITAL Z(+), using the atomic and the Littlewood-Paley function characterizations ofH(X)(DOUBLE-STRUCK CAPITAL Z(n)), we also establish itss-order intrinsic square function characterizations, respectively, in terms of the intrinsic Lusin-area functionS(alpha,s), the intrinsicg-functiong(alpha,s), and the intrinsicg*(lambda)-functiong*(lambda alpha s), where lambda coincides with the best known range.
引用
收藏
页码:769 / 806
页数:38
相关论文
共 38 条
[1]  
[Anonymous], 2014, CLASSICAL FOURIER AN, DOI DOI 10.1007/978-1-4939-1194-3
[2]  
BENNETT C., 1988, Interpolation of Operators, V129
[3]  
Bownik M., 2003, Anisotropic Hardy Spaces and Wavelets
[4]   Littlewood-Paley Characterizations of Hardy-Type Spaces Associated with Ball Quasi-Banach Function Spaces In Memory of Professor Carlos Berenstein [J].
Chang, Der-Chen ;
Wang, Songbai ;
Yang, Dachun ;
Zhang, Yangyang .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (03)
[5]   Variable Hardy Spaces [J].
Cruz-Uribe, David ;
Wang, Li-An Daniel .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (02) :447-493
[6]  
CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3
[7]  
FEFFERMAN C, 1972, ACTA MATH-UPPSALA, V129, P137, DOI 10.1007/BF02392215
[8]  
Folland G. B., 1982, MATH NOTES, V28
[9]  
Garcia-Cuerva J., 1979, THESIS, V162
[10]   Some characterizations of weighted Hardy spaces [J].
Huang, Jizheng ;
Liu, Yu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (01) :121-127