Flame and furnace synthesis of single-walled and multi-walled carbon nanotubes and nanofibers

被引:54
作者
Wal, RLV
Ticich, TM
机构
[1] NASA Glenn, NCMR, Cleveland, OH 44135 USA
[2] Centenary Coll Louisiana, Dept Chem, Shreveport, LA 71134 USA
关键词
D O I
10.1021/jp012838u
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Results are presented for flame synthesis of metal-catalyzed carbon nanotubes. A thermal evaporation technique is used to create the catalyst nanoparticles of Fe or Ni through gas condensation followed by entrainment into the flame. Results are compared with those using a high-temperature tube furnace to provide the reactive environment. Each system yields consistent results, with CO/H2 mixtures generally yielding single-walled nanotubes (SWNTs) with Fe while C2H2/H2 mixtures usually produce multiwalled nanotubes (MWNTs) with Ni. A ternary gas mixture of CO/C2/H2 produces a better yield of nanofibers than either a COM2 or C2H2/H2 mixture at 700 degreesC with Ni catalyst. Our results reflect a combination or possibly a synergy between thermal- plus adsorbate-induced restructuring and adsorbate-particle steric factors affecting particle structure and reactivity.
引用
收藏
页码:10249 / 10256
页数:8
相关论文
共 50 条
[1]   Comparative flame and furnace synthesis of single-walled carbon nanotubes [J].
Vander Wal, RL ;
Ticich, TM .
CHEMICAL PHYSICS LETTERS, 2001, 336 (1-2) :24-32
[2]   Hydrogen storage in single-walled and multi-walled carbon nanotubes [J].
Lee, SM ;
Frauenheim, T ;
Elstner, M ;
Hwang, YG ;
Lee, YH .
AMORPHOUS AND NANOSTRUCTURED CARBON, 2000, 593 :187-192
[3]   Calculations of interactions in single-walled and multi-walled carbon nanotubes [J].
Buisson, JP ;
Chauvet, O ;
Lefrant, S ;
Benoit, JM ;
Godon, C ;
Stephan, C .
ELECTRONIC PROPERTIES OF MOLECULAR NANOSTRUCTURES, 2001, 591 :430-433
[4]   Flame synthesis of single-walled carbon nanotubes [J].
Height, MJ ;
Howard, JB ;
Tester, JW .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2005, 30 :2537-2543
[5]   Flame synthesis of single-walled carbon nanotubes [J].
Height, MJ ;
Howard, JB ;
Tester, JW ;
Sande, JBV .
CARBON, 2004, 42 (11) :2295-2307
[6]   Synthesis and structure of BN-doped multi-walled and single-walled carbon nanotubes [J].
Enouz, S. ;
Stephan, O. ;
Glerup, M. ;
Cochon, J. L. ;
Colliex, C. ;
Loiseau, A. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (13) :3246-3251
[7]   Synthesis of single-walled and multi-walled carbon nanotubes by arc-water method [J].
Montoro, LA ;
Lofrano, RCZ ;
Rosolen, JM .
CARBON, 2005, 43 (01) :200-203
[8]   Direct synthesis of multi-walled and single-walled carbon nanotubes by spray-pyrolysis [J].
Biró, LP ;
Horváth, ZE ;
Koós, AA ;
Osváth, Z ;
Vértesy, Z ;
Darabont, A ;
Kertész, K ;
Neamtu, C ;
Sárközi, Z ;
Tapasztó, L .
JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2003, 5 (03) :661-666
[9]   Alloy hydride catalyst route for the synthesis of single-walled carbon nanotubes, multi-walled carbon nanotubes and magnetic metal-filled multi-walled carbon nanotubes [J].
Reddy, A. Leela Mohana ;
Shaijumon, M. M. ;
Ramaprabhu, S. .
NANOTECHNOLOGY, 2006, 17 (21) :5299-5305
[10]   Fabrication of single-walled carbon nanotubes from multi-walled carbon nanotubes and carbon fibers [J].
Zhong, R ;
Cong, HT ;
Liu, C .
CARBON, 2002, 40 (15) :2970-2973